Solved

Determine I) the Domain of the Function, Ii) the Range f(x)=5x+4f ( x ) = \sqrt { 5 x + 4 }

Question 89

Multiple Choice

Determine i) the domain of the function, ii) the range of the function, iii) the domain of the inverse, and iv) the range of
the inverse.
- f(x) =5x+4f ( x ) = \sqrt { 5 x + 4 }


A) f(x) :D={xx45},R={yy0}f(x) : D=\left\{x \mid x \geq-\frac{4}{5}\right\}, R=\{y \mid y \geq 0\}
f1(x) :D f^{-1}(x) : D is all real numbers, R={yy45} R=\left\{y \mid y \geq-\frac{4}{5}\right\}

B) f(x) :D={xx45},R={yy0}f ( x ) : D = \left\{ x \mid x \geq - \frac { 4 } { 5 } \right\} , R = \{ y \mid y \geq 0 \} ; f1(x) \mathrm { f } ^ { - 1 } ( \mathrm { x } ) : D\mathrm { D } is all real numbers, R={yy45}\mathrm { R } = \left\{ \mathrm { y } \mid \mathrm { y } \geq - \frac { 4 } { 5 } \right\} f1(x) :D={xx0,R={yy45}\mathrm { f } - 1 ( \mathrm { x } ) : \mathrm { D } = \left\{ \mathrm { x } | \mathrm { x } \geq 0 \rangle , \mathrm { R } = \left\{ \mathrm { y } \mid \mathrm { y } \geq - \frac { 4 } { 5 } \right\} \right.

C) f(x) :D={xx45},Rf ( x ) : D = \left\{ x \mid x \geq - \frac { 4 } { 5 } \right\} , R is all real numbers;
f1(x) :D is all real numbers, R={yy45}f^{-1}(x) : D \text { is all real numbers, } R=\left\{y \mid y \geq-\frac{4}{5}\right\}

D)
f(x) :D={xx0},R={yy0}f1(x) :D={xx0},R={yy45}\begin{array}{l}f(x) : D=\{x \mid x \geq 0\}, R=\{y \mid y \geq 0\} \\f^{-1}(x) : D=\{x \mid x \geq 0\}, R=\left\{y \mid y \geq-\frac{4}{5}\right\}\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions