Solved

Find the Solution Set for the System by Graphing Both x=(y+2)21(x2)2+(y+2)2=1\begin{array} { l } x = ( y + 2 ) ^ { 2 } - 1 \\( x - 2 ) ^ { 2 } + ( y + 2 ) ^ { 2 } = 1\end{array}

Question 144

Multiple Choice

Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection.
- x=(y+2) 21(x2) 2+(y+2) 2=1\begin{array} { l } x = ( y + 2 ) ^ { 2 } - 1 \\( x - 2 ) ^ { 2 } + ( y + 2 ) ^ { 2 } = 1\end{array}
 Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. - \begin{array} { l }  x = ( y + 2 )  ^ { 2 } - 1 \\ ( x - 2 )  ^ { 2 } + ( y + 2 )  ^ { 2 } = 1 \end{array}     A)   \{ ( 2 , - 2 )  \}  B)   \{ ( - 1 , - 2 )  \}  C)   \{ ( - 1 , - 2 )  , ( 2 , - 2 )  \}  D)   \varnothing


A) {(2,2) }\{ ( 2 , - 2 ) \}
B) {(1,2) }\{ ( - 1 , - 2 ) \}
C) {(1,2) ,(2,2) }\{ ( - 1 , - 2 ) , ( 2 , - 2 ) \}
D) \varnothing

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions