Solved

Graph the Polar Equations of Conics
- r=222cosθr = \frac { 2 } { 2 - 2 \cos \theta } \quad

Question 142

Multiple Choice

Graph the Polar Equations of Conics
- r=222cosθr = \frac { 2 } { 2 - 2 \cos \theta } \quad Identify the directrix and vertex.
 Graph the Polar Equations of Conics - r = \frac { 2 } { 2 - 2 \cos \theta } \quad  Identify the directrix and vertex.    A)  directrix: 1 unit(s)  to the left of the pole at  x = - 1  vertex:  \left( \frac { 1 } { 2 } , \pi \right)     B)  directrix: 1 unit(s)  to the right of the pole at  x = 1  vertex:  \left( \frac { 1 } { 2 } , 0 \right)     C)  directrix: 1 unit(s)  above the pole at  \mathrm { y } = 1  vertex:  \left( \frac { 1 } { 2 } , \frac { \pi } { 2 } \right)     D)  directrix: 1 unit(s)  below the pole at  \mathrm { y } = - 1  vertex:  \left( \frac { 1 } { 2 } , \frac { 3 \pi } { 2 } \right)


A) directrix: 1 unit(s) to the left of
the pole at x=1x = - 1
vertex: (12,π) \left( \frac { 1 } { 2 } , \pi \right)
 Graph the Polar Equations of Conics - r = \frac { 2 } { 2 - 2 \cos \theta } \quad  Identify the directrix and vertex.    A)  directrix: 1 unit(s)  to the left of the pole at  x = - 1  vertex:  \left( \frac { 1 } { 2 } , \pi \right)     B)  directrix: 1 unit(s)  to the right of the pole at  x = 1  vertex:  \left( \frac { 1 } { 2 } , 0 \right)     C)  directrix: 1 unit(s)  above the pole at  \mathrm { y } = 1  vertex:  \left( \frac { 1 } { 2 } , \frac { \pi } { 2 } \right)     D)  directrix: 1 unit(s)  below the pole at  \mathrm { y } = - 1  vertex:  \left( \frac { 1 } { 2 } , \frac { 3 \pi } { 2 } \right)
B) directrix: 1 unit(s) to the right of
the pole at x=1x = 1
vertex: (12,0) \left( \frac { 1 } { 2 } , 0 \right)
 Graph the Polar Equations of Conics - r = \frac { 2 } { 2 - 2 \cos \theta } \quad  Identify the directrix and vertex.    A)  directrix: 1 unit(s)  to the left of the pole at  x = - 1  vertex:  \left( \frac { 1 } { 2 } , \pi \right)     B)  directrix: 1 unit(s)  to the right of the pole at  x = 1  vertex:  \left( \frac { 1 } { 2 } , 0 \right)     C)  directrix: 1 unit(s)  above the pole at  \mathrm { y } = 1  vertex:  \left( \frac { 1 } { 2 } , \frac { \pi } { 2 } \right)     D)  directrix: 1 unit(s)  below the pole at  \mathrm { y } = - 1  vertex:  \left( \frac { 1 } { 2 } , \frac { 3 \pi } { 2 } \right)
C) directrix: 1 unit(s) above
the pole at y=1\mathrm { y } = 1
vertex: (12,π2) \left( \frac { 1 } { 2 } , \frac { \pi } { 2 } \right)
 Graph the Polar Equations of Conics - r = \frac { 2 } { 2 - 2 \cos \theta } \quad  Identify the directrix and vertex.    A)  directrix: 1 unit(s)  to the left of the pole at  x = - 1  vertex:  \left( \frac { 1 } { 2 } , \pi \right)     B)  directrix: 1 unit(s)  to the right of the pole at  x = 1  vertex:  \left( \frac { 1 } { 2 } , 0 \right)     C)  directrix: 1 unit(s)  above the pole at  \mathrm { y } = 1  vertex:  \left( \frac { 1 } { 2 } , \frac { \pi } { 2 } \right)     D)  directrix: 1 unit(s)  below the pole at  \mathrm { y } = - 1  vertex:  \left( \frac { 1 } { 2 } , \frac { 3 \pi } { 2 } \right)
D) directrix: 1 unit(s) below
the pole at y=1\mathrm { y } = - 1
vertex: (12,3π2) \left( \frac { 1 } { 2 } , \frac { 3 \pi } { 2 } \right)
 Graph the Polar Equations of Conics - r = \frac { 2 } { 2 - 2 \cos \theta } \quad  Identify the directrix and vertex.    A)  directrix: 1 unit(s)  to the left of the pole at  x = - 1  vertex:  \left( \frac { 1 } { 2 } , \pi \right)     B)  directrix: 1 unit(s)  to the right of the pole at  x = 1  vertex:  \left( \frac { 1 } { 2 } , 0 \right)     C)  directrix: 1 unit(s)  above the pole at  \mathrm { y } = 1  vertex:  \left( \frac { 1 } { 2 } , \frac { \pi } { 2 } \right)     D)  directrix: 1 unit(s)  below the pole at  \mathrm { y } = - 1  vertex:  \left( \frac { 1 } { 2 } , \frac { 3 \pi } { 2 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions