Solved

Graph the Polar Equations of Conics
- r=62+2sinθr = \frac { 6 } { 2 + 2 \sin \theta } \quad

Question 10

Multiple Choice

Graph the Polar Equations of Conics
- r=62+2sinθr = \frac { 6 } { 2 + 2 \sin \theta } \quad Identify the directrix and vertex.
 Graph the Polar Equations of Conics - r = \frac { 6 } { 2 + 2 \sin \theta } \quad  Identify the directrix and vertex.    A)  directrix: 3 unit(s)  above the pole at  y = 3   vertex:  \left( \frac { 3 } { 2 } , \frac { \pi } { 2 } \right)     B)  directrix: 3 unit(s)  to the right of the pole at  x = 3  vertex:  \left( \frac { 3 } { 2 } , 0 \right)     C)  directrix: 3 unit(s)  to the left of the pole at  x = - 3  vertex:  \left( - \frac { 3 } { 2 } , 0 \right)     D)  directrix: 3 unit(s)  below the pole at  \mathrm { y } = - 3  vertex:  \left( - \frac { 3 } { 2 } , \frac { \pi } { 2 } \right)


A) directrix: 3 unit(s) above
the pole at y=3y = 3
vertex: (32,π2) \left( \frac { 3 } { 2 } , \frac { \pi } { 2 } \right)
 Graph the Polar Equations of Conics - r = \frac { 6 } { 2 + 2 \sin \theta } \quad  Identify the directrix and vertex.    A)  directrix: 3 unit(s)  above the pole at  y = 3   vertex:  \left( \frac { 3 } { 2 } , \frac { \pi } { 2 } \right)     B)  directrix: 3 unit(s)  to the right of the pole at  x = 3  vertex:  \left( \frac { 3 } { 2 } , 0 \right)     C)  directrix: 3 unit(s)  to the left of the pole at  x = - 3  vertex:  \left( - \frac { 3 } { 2 } , 0 \right)     D)  directrix: 3 unit(s)  below the pole at  \mathrm { y } = - 3  vertex:  \left( - \frac { 3 } { 2 } , \frac { \pi } { 2 } \right)
B) directrix: 3 unit(s) to the right of
the pole at x=3x = 3
vertex: (32,0) \left( \frac { 3 } { 2 } , 0 \right)
 Graph the Polar Equations of Conics - r = \frac { 6 } { 2 + 2 \sin \theta } \quad  Identify the directrix and vertex.    A)  directrix: 3 unit(s)  above the pole at  y = 3   vertex:  \left( \frac { 3 } { 2 } , \frac { \pi } { 2 } \right)     B)  directrix: 3 unit(s)  to the right of the pole at  x = 3  vertex:  \left( \frac { 3 } { 2 } , 0 \right)     C)  directrix: 3 unit(s)  to the left of the pole at  x = - 3  vertex:  \left( - \frac { 3 } { 2 } , 0 \right)     D)  directrix: 3 unit(s)  below the pole at  \mathrm { y } = - 3  vertex:  \left( - \frac { 3 } { 2 } , \frac { \pi } { 2 } \right)
C) directrix: 3 unit(s) to the left of the pole at x=3x = - 3
vertex: (32,0) \left( - \frac { 3 } { 2 } , 0 \right)
 Graph the Polar Equations of Conics - r = \frac { 6 } { 2 + 2 \sin \theta } \quad  Identify the directrix and vertex.    A)  directrix: 3 unit(s)  above the pole at  y = 3   vertex:  \left( \frac { 3 } { 2 } , \frac { \pi } { 2 } \right)     B)  directrix: 3 unit(s)  to the right of the pole at  x = 3  vertex:  \left( \frac { 3 } { 2 } , 0 \right)     C)  directrix: 3 unit(s)  to the left of the pole at  x = - 3  vertex:  \left( - \frac { 3 } { 2 } , 0 \right)     D)  directrix: 3 unit(s)  below the pole at  \mathrm { y } = - 3  vertex:  \left( - \frac { 3 } { 2 } , \frac { \pi } { 2 } \right)
D) directrix: 3 unit(s) below
the pole at y=3\mathrm { y } = - 3
vertex: (32,π2) \left( - \frac { 3 } { 2 } , \frac { \pi } { 2 } \right)
 Graph the Polar Equations of Conics - r = \frac { 6 } { 2 + 2 \sin \theta } \quad  Identify the directrix and vertex.    A)  directrix: 3 unit(s)  above the pole at  y = 3   vertex:  \left( \frac { 3 } { 2 } , \frac { \pi } { 2 } \right)     B)  directrix: 3 unit(s)  to the right of the pole at  x = 3  vertex:  \left( \frac { 3 } { 2 } , 0 \right)     C)  directrix: 3 unit(s)  to the left of the pole at  x = - 3  vertex:  \left( - \frac { 3 } { 2 } , 0 \right)     D)  directrix: 3 unit(s)  below the pole at  \mathrm { y } = - 3  vertex:  \left( - \frac { 3 } { 2 } , \frac { \pi } { 2 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions