Solved

Graph the Polar Equations of Conics
- r=41+2cosθ\mathrm { r } = \frac { 4 } { 1 + 2 \cos \theta } \quad

Question 7

Multiple Choice

Graph the Polar Equations of Conics
- r=41+2cosθ\mathrm { r } = \frac { 4 } { 1 + 2 \cos \theta } \quad Identify the directrix and vertices.
 Graph the Polar Equations of Conics - \mathrm { r } = \frac { 4 } { 1 + 2 \cos \theta } \quad  Identify the directrix and vertices.   A)  directrix: 2 unit(s)  to the right of the pole at  x = - 2  vertices:  ( - 4 , \pi )  , \left( \frac { 4 } { 3 } , 0 \right)     B)  directrix: 2 unit(s)  to the left of the pole at  x = 2   vertices:  ( 4 , \pi )  , \left( - \frac { 4 } { 3 } , 0 \right)     C)  directrix: 2 unit(s)  above the pole at  \mathrm { y } = 2  vertices:  \left( \frac { 4 } { 3 } , \frac { \pi } { 2 } \right)  , \left( 4 , \frac { \pi } { 2 } \right)     D)  directrix: 2 unit(s)  below the pole at  \mathrm { y } = - 2  vertices:  \left( - \frac { 4 } { 3 } , \frac { \pi } { 2 } \right)  , \left( - 4 , \frac { \pi } { 2 } \right)


A) directrix: 2 unit(s) to the right of the pole at x=2x = - 2
vertices: (4,π) ,(43,0) ( - 4 , \pi ) , \left( \frac { 4 } { 3 } , 0 \right)
 Graph the Polar Equations of Conics - \mathrm { r } = \frac { 4 } { 1 + 2 \cos \theta } \quad  Identify the directrix and vertices.   A)  directrix: 2 unit(s)  to the right of the pole at  x = - 2  vertices:  ( - 4 , \pi )  , \left( \frac { 4 } { 3 } , 0 \right)     B)  directrix: 2 unit(s)  to the left of the pole at  x = 2   vertices:  ( 4 , \pi )  , \left( - \frac { 4 } { 3 } , 0 \right)     C)  directrix: 2 unit(s)  above the pole at  \mathrm { y } = 2  vertices:  \left( \frac { 4 } { 3 } , \frac { \pi } { 2 } \right)  , \left( 4 , \frac { \pi } { 2 } \right)     D)  directrix: 2 unit(s)  below the pole at  \mathrm { y } = - 2  vertices:  \left( - \frac { 4 } { 3 } , \frac { \pi } { 2 } \right)  , \left( - 4 , \frac { \pi } { 2 } \right)
B) directrix: 2 unit(s) to the left of the pole at x=2x = 2
vertices: (4,π) ,(43,0) ( 4 , \pi ) , \left( - \frac { 4 } { 3 } , 0 \right)
 Graph the Polar Equations of Conics - \mathrm { r } = \frac { 4 } { 1 + 2 \cos \theta } \quad  Identify the directrix and vertices.   A)  directrix: 2 unit(s)  to the right of the pole at  x = - 2  vertices:  ( - 4 , \pi )  , \left( \frac { 4 } { 3 } , 0 \right)     B)  directrix: 2 unit(s)  to the left of the pole at  x = 2   vertices:  ( 4 , \pi )  , \left( - \frac { 4 } { 3 } , 0 \right)     C)  directrix: 2 unit(s)  above the pole at  \mathrm { y } = 2  vertices:  \left( \frac { 4 } { 3 } , \frac { \pi } { 2 } \right)  , \left( 4 , \frac { \pi } { 2 } \right)     D)  directrix: 2 unit(s)  below the pole at  \mathrm { y } = - 2  vertices:  \left( - \frac { 4 } { 3 } , \frac { \pi } { 2 } \right)  , \left( - 4 , \frac { \pi } { 2 } \right)
C) directrix: 2 unit(s) above the pole at y=2\mathrm { y } = 2
vertices: (43,π2) ,(4,π2) \left( \frac { 4 } { 3 } , \frac { \pi } { 2 } \right) , \left( 4 , \frac { \pi } { 2 } \right)
 Graph the Polar Equations of Conics - \mathrm { r } = \frac { 4 } { 1 + 2 \cos \theta } \quad  Identify the directrix and vertices.   A)  directrix: 2 unit(s)  to the right of the pole at  x = - 2  vertices:  ( - 4 , \pi )  , \left( \frac { 4 } { 3 } , 0 \right)     B)  directrix: 2 unit(s)  to the left of the pole at  x = 2   vertices:  ( 4 , \pi )  , \left( - \frac { 4 } { 3 } , 0 \right)     C)  directrix: 2 unit(s)  above the pole at  \mathrm { y } = 2  vertices:  \left( \frac { 4 } { 3 } , \frac { \pi } { 2 } \right)  , \left( 4 , \frac { \pi } { 2 } \right)     D)  directrix: 2 unit(s)  below the pole at  \mathrm { y } = - 2  vertices:  \left( - \frac { 4 } { 3 } , \frac { \pi } { 2 } \right)  , \left( - 4 , \frac { \pi } { 2 } \right)
D) directrix: 2 unit(s) below
the pole at y=2\mathrm { y } = - 2
vertices: (43,π2) ,(4,π2) \left( - \frac { 4 } { 3 } , \frac { \pi } { 2 } \right) , \left( - 4 , \frac { \pi } { 2 } \right)
 Graph the Polar Equations of Conics - \mathrm { r } = \frac { 4 } { 1 + 2 \cos \theta } \quad  Identify the directrix and vertices.   A)  directrix: 2 unit(s)  to the right of the pole at  x = - 2  vertices:  ( - 4 , \pi )  , \left( \frac { 4 } { 3 } , 0 \right)     B)  directrix: 2 unit(s)  to the left of the pole at  x = 2   vertices:  ( 4 , \pi )  , \left( - \frac { 4 } { 3 } , 0 \right)     C)  directrix: 2 unit(s)  above the pole at  \mathrm { y } = 2  vertices:  \left( \frac { 4 } { 3 } , \frac { \pi } { 2 } \right)  , \left( 4 , \frac { \pi } { 2 } \right)     D)  directrix: 2 unit(s)  below the pole at  \mathrm { y } = - 2  vertices:  \left( - \frac { 4 } { 3 } , \frac { \pi } { 2 } \right)  , \left( - 4 , \frac { \pi } { 2 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions