Solved

Use the Gauss-Jordan Method to Solve the System of Equations xz=5y+z=1x+z=2\begin{array} { l } x - z = - 5 \\y + z = 1 \\x + z = 2\end{array}

Question 464

Multiple Choice

Use the Gauss-Jordan method to solve the system of equations. If the system has infinitely many solutions, let the last variable be the arbitrary variable.
xz=5y+z=1x+z=2\begin{array} { l } x - z = - 5 \\y + z = 1 \\x + z = 2\end{array}


A) {(3,5,7) }\{ ( - 3 , - 5,7 ) \}
B) {(72,152,172) }\left\{ \left( \frac { 7 } { 2 } , - \frac { 15 } { 2 } , \frac { 17 } { 2 } \right) \right\}
C) {(5,1,0) }\{ ( - 5,1,0 ) \}
D) {(32,52,72) }\left\{ \left( - \frac { 3 } { 2 } , - \frac { 5 } { 2 } , \frac { 7 } { 2 } \right) \right\}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions