Solved

Solve the System to Find W1 and W2W _ { 1 } \text { and } W _ { 2 }

Question 15

Multiple Choice

Solve the system to find W1 and W2W _ { 1 } \text { and } W _ { 2 }
-Linear systems occur in the design of roof trusses for new homes and buildings. The simplest type of roof truss is a triangle. The truss shown in the figure is used to frame roofs of small buildings. If a 123-pound force is applied at the peak of the truss, then the forces or weights W1W _ { 1 } and W2W _ { 2 } exerted parallel to each rafter of the truss are determined by the following linear system of equations.
 Solve the system to find  W _ { 1 } \text { and } W _ { 2 }  -Linear systems occur in the design of roof trusses for new homes and buildings. The simplest type of roof truss is a triangle. The truss shown in the figure is used to frame roofs of small buildings. If a 123-pound force is applied at the peak of the truss, then the forces or weights  W _ { 1 }  and  W _ { 2 }  exerted parallel to each rafter of the truss are determined by the following linear system of equations.     \begin{array} { l }  W _ { 1 } + \sqrt { 2 } W _ { 2 } = 246 \\ \sqrt { 3 } W _ { 1 } - \sqrt { 2 } W _ { 2 } = 0 \end{array}  A)   \mathrm { W } _ { 1 } = 110.28 \mathrm { lb } ; \mathrm { W } _ { 2 } = 90.04 \mathrm { lb }  B)   \mathrm { W } _ { 1 } = 90.04 \mathrm { lb } ; \mathrm { W } _ { 2 } = 110.28 \mathrm { lb }  C)   \mathrm { W } _ { 1 } = 123 \mathrm { lb } ; \mathrm { W } _ { 2 } = 150.64 \mathrm { lb }  D)   W _ { 1 } = 45.02 \mathrm { lb } ; W _ { 2 } = 55.14 \mathrm { lb }

W1+2W2=2463W12W2=0\begin{array} { l } W _ { 1 } + \sqrt { 2 } W _ { 2 } = 246 \\\sqrt { 3 } W _ { 1 } - \sqrt { 2 } W _ { 2 } = 0\end{array}


A) W1=110.28lb;W2=90.04lb\mathrm { W } _ { 1 } = 110.28 \mathrm { lb } ; \mathrm { W } _ { 2 } = 90.04 \mathrm { lb }
B) W1=90.04lb;W2=110.28lb\mathrm { W } _ { 1 } = 90.04 \mathrm { lb } ; \mathrm { W } _ { 2 } = 110.28 \mathrm { lb }
C) W1=123lb;W2=150.64lb\mathrm { W } _ { 1 } = 123 \mathrm { lb } ; \mathrm { W } _ { 2 } = 150.64 \mathrm { lb }
D) W1=45.02lb;W2=55.14lbW _ { 1 } = 45.02 \mathrm { lb } ; W _ { 2 } = 55.14 \mathrm { lb }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions