Solved

Solve for the Indicated Variable II0=(I1I0)10kt\mathrm { I } - \mathrm { I } _ { 0 } = \left( \mathrm { I } _ { 1 } - \mathrm { I } _ { 0 } \right) 10 ^ { - \mathrm { kt } }

Question 273

Multiple Choice

Solve for the indicated variable.
- II0=(I1I0) 10kt\mathrm { I } - \mathrm { I } _ { 0 } = \left( \mathrm { I } _ { 1 } - \mathrm { I } _ { 0 } \right) 10 ^ { - \mathrm { kt } } , for t\mathrm { t }


A) t=1klog(II1) \mathrm { t } = - \frac { 1 } { \mathrm { k } } \log \left( \mathrm { I } - \mathrm { I } _ { 1 } \right)
B) t=1klogIIt = - \frac { 1 } { k } \log \frac { \mathrm { I } } { \mathrm { I } }
C) t=II0k(I1I0) t = - \frac { I - I _ { 0 } } { k \left( I _ { 1 } - I _ { 0 } \right) }
D) t=1klogII0I1I0t = - \frac { 1 } { k } \log \frac { \mathrm { I } - \mathrm { I } _ { 0 } } { \mathrm { I } _ { 1 } - \mathrm { I } _ { 0 } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions