Solved

Give a Rule for the Piecewise-Defined Function f(x)={3x if x03x if x>0;f ( x ) = \left\{ \begin{array} { l l } 3 x & \text { if } x \leq 0 \\ - 3 x & \text { if } x > 0 \end{array} ; \right.

Question 171

Multiple Choice

Give a rule for the piecewise-defined function. Then give the domain and range.
- Give a rule for the piecewise-defined function. Then give the domain and range. -  A)   f ( x )  = \left\{ \begin{array} { l l } 3 x & \text { if } x \leq 0 \\ - 3 x & \text { if } x > 0 \end{array} ; \right.  Domain:  \{ - 3,3 \} , Range:  ( x , \infty )   B)   f ( x )  = \left\{ \begin{array} { l l } 3 & \text { if } x < 0 \\ - 3 & \text { if } x \geq 0 \end{array} \right. ; Domain:  ( \infty , \infty )  , Range:  \{ - 3,3 \}  C)   f ( x )  = \left\{ \begin{array} { l l } - 3 & \text { if } x \leq 0 \\ 3 & \text { if } x > 0 \end{array} \right. ; Domain:  \{ - 3,3 \} , Range:  ( \infty , \infty )   D)   f ( x )  = \left\{ \begin{array} { l l } 3 & \text { if } x \leq 0 \\ - 3 & \text { if } x > 0 \end{array} \right. ; Domain:  ( * , \infty )  , Range:  \{ - 3,3 \}


A) f(x) ={3x if x03x if x>0;f ( x ) = \left\{ \begin{array} { l l } 3 x & \text { if } x \leq 0 \\ - 3 x & \text { if } x > 0 \end{array} ; \right. Domain: {3,3}\{ - 3,3 \} , Range: (x,) ( x , \infty )
B) f(x) ={3 if x<03 if x0f ( x ) = \left\{ \begin{array} { l l } 3 & \text { if } x < 0 \\ - 3 & \text { if } x \geq 0 \end{array} \right. ; Domain: (,) ( \infty , \infty ) , Range: {3,3}\{ - 3,3 \}
C) f(x) ={3 if x03 if x>0f ( x ) = \left\{ \begin{array} { l l } - 3 & \text { if } x \leq 0 \\ 3 & \text { if } x > 0 \end{array} \right. ; Domain: {3,3}\{ - 3,3 \} , Range: (,) ( \infty , \infty )
D) f(x) ={3 if x03 if x>0f ( x ) = \left\{ \begin{array} { l l } 3 & \text { if } x \leq 0 \\ - 3 & \text { if } x > 0 \end{array} \right. ; Domain: (,) ( * , \infty ) , Range: {3,3}\{ - 3,3 \}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions