Solved

Rotate the Axes So That the New Equation Contains No 24xy7y2+36=024 x y - 7 y ^ { 2 } + 36 = 0

Question 186

Multiple Choice

Rotate the axes so that the new equation contains no xy-term. Discuss the new equati
- 24xy7y2+36=024 x y - 7 y ^ { 2 } + 36 = 0


A) θ=36.9\theta = 36.9 ^ { \circ }
y29x216=1\frac { y ^ { \prime 2 } } { 9 } - \frac { x ^ { \prime 2 } } { 16 } = 1
hyperbola
 center at (0,0) \text { center at }(0,0)
transverse axis is the yy ^ { \prime } -axis
 vertices at (0,±3) \text { vertices at }(0, \pm 3)


B) θ=36.9\theta = 36.9 ^ { \circ }
4y29x24=1\frac { 4 y ^ { \prime 2 } } { 9 } - \frac { x ^ { \prime 2 } } { 4 } = 1
hyperbola
 center at (0,0) \text { center at }(0,0)
transverse axis is the yy ^ { \prime } -axis
vertices at (0,±32) \left( 0 , \pm \frac { 3 } { 2 } \right)


C) θ=36.9\theta = 36.9 ^ { \circ }
y244x29=1\frac { y ^ { \prime 2 } } { 4 } - \frac { 4 x ^ { \prime 2 } } { 9 } = 1
hyperbola
center at (0,0) ( 0,0 )
transverse axis is the yy ^ { \prime } -axis
vertices at (0,±2) ( 0 , \pm 2 )

D) θ=53.1\theta = 53.1 ^ { \circ }
y244x29=1\frac { y ^ { \prime 2 } } { 4 } - \frac { 4 x ^ { \prime 2 } } { 9 } = 1
hyperbola
center at (0,0) ( 0,0 )
transverse axis is the yy ^ { \prime } -axis
vertices at (0,±2) ( 0 , \pm 2 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions