Solved

Rotate the Axes So That the New Equation Contains No x2+2xy+y28x+8y=0x^{2}+2 x y+y^{2}-8 x+8 y=0

Question 4

Multiple Choice

Rotate the axes so that the new equation contains no xy-term. Discuss the new equati
- x2+2xy+y28x+8y=0x^{2}+2 x y+y^{2}-8 x+8 y=0


A)
θ=36.9x24+y24=1 ellipse  center (0,0)  major axis is x-axi:  vertices at (±2,0) \begin{array}{l}\theta=36.9^{\circ} \\\frac{x^{\prime 2}}{4}+\frac{y^{\prime 2}}{4}=1 \\\text { ellipse } \\\text { center }(0,0) \\\text { major axis is } x^{\prime} \text {-axi: } \\\text { vertices at }(\pm 2,0) \end{array}

B)
θ=36.9x24+y22=1 ellipse  center (0,0)  major axis is x-axi:  vertices at (±2,0) \begin{array}{l}\theta=36.9^{\circ} \\\frac{x^{2}}{4}+\frac{y^{2}}{2}=1 \\\text { ellipse } \\\text { center }(0,0) \\\text { major axis is } x^{\prime} \text {-axi: } \\\text { vertices at }(\pm 2,0) \end{array}

C)
θ=45x2=42y parabola  vertex at (0,0)  focus at (0,2) \begin{array}{l}\theta=45^{\circ} \\x^{\prime 2}=-4 \sqrt{2} y^{\prime} \\\text { parabola } \\\text { vertex at }(0,0) \\\text { focus at }(0,-\sqrt{2}) \end{array}

D)
θ=45y2=42x parabola  vertex at (0,0)  focus at (2,0) \begin{array}{l}\theta=45^{\circ} \\y^{\prime 2}=-4 \sqrt{2} x^{\prime} \\\text { parabola } \\\text { vertex at }(0,0) \\\text { focus at }(-\sqrt{2}, 0) \end{array}


Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions