Solved

Find the Center, Transverse Axis, Vertices, Foci, and Asymptotes of the Hyperbola

Question 1

Multiple Choice

Find the center, transverse axis, vertices, foci, and asymptotes of the hyperbola.
- x236y24=1\frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { 4 } = 1


A) center at (0,0) ( 0,0 )
transverse axis is xx -axis
vertices at (11,0) ( - 11,0 ) and (11,0) ( 11,0 )
foci at (137,0) ( - \sqrt { 137 } , 0 ) and (137,0) ( \sqrt { 137 } , 0 )
asymptotes of y=114y = - \frac { 11 } { 4 } and y=114y = \frac { 11 } { 4 }

B) center at (0,0) ( 0,0 )
transverse axis is y\mathrm { y } -axis
vertices at (0,4) ( 0 , - 4 ) and (0,4) ( 0,4 )
foci at (137,0) ( - \sqrt { 137 } , 0 ) and (137,0) ( \sqrt { 137 } , 0 )
asymptotes of y=114y = - \frac { 11 } { 4 } and y=114y = \frac { 11 } { 4 }

C) center at (0,0) ( 0,0 )
transverse axis is x\mathrm { x } -axis
vertices at (4,0) ( - 4,0 ) and (4,0) ( 4,0 )
foci at (11,0) ( - 11,0 ) and (11,0) ( 11,0 )
asymptotes of y=114y = - \frac { 11 } { 4 } and y=114y = \frac { 11 } { 4 }

D) center at (0,0) ( 0,0 )
transverse axis is xx -axis
vertices at (4,0) ( - 4,0 ) and (4,0) ( 4,0 )
foci at (137,0) ( - \sqrt { 137 } , 0 ) and (137,0) ( \sqrt { 137 } , 0 )
asymptotes of y=114y = - \frac { 11 } { 4 } and y=114y = \frac { 11 } { 4 }

Correct Answer:

verifed

Verified

Related Questions