Solved

Transform the Polar Equation to an Equation in Rectangular Coordinates rsecθ=6r \sec \theta = - 6

Question 104

Multiple Choice

Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.
- rsecθ=6r \sec \theta = - 6
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r \sec \theta = - 6     A)     ( x + 3 )  ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3  center  ( - 3,0 )   in rectangular coordinates  B)     y = - 6 ; horizontal line 6 units below the pole  C)     x = - 6 ; vertical line 6 units to the left of the pole  D)     x ^ { 2 } + ( y + 3 )  ^ { 2 } = 9 ; circle, radius 3 center at  ( 0 , - 3 )   in rectangular coordinates
A)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r \sec \theta = - 6     A)     ( x + 3 )  ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3  center  ( - 3,0 )   in rectangular coordinates  B)     y = - 6 ; horizontal line 6 units below the pole  C)     x = - 6 ; vertical line 6 units to the left of the pole  D)     x ^ { 2 } + ( y + 3 )  ^ { 2 } = 9 ; circle, radius 3 center at  ( 0 , - 3 )   in rectangular coordinates
(x+3) 2+y2=9( x + 3 ) ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3
center (3,0) ( - 3,0 ) in rectangular coordinates

B)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r \sec \theta = - 6     A)     ( x + 3 )  ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3  center  ( - 3,0 )   in rectangular coordinates  B)     y = - 6 ; horizontal line 6 units below the pole  C)     x = - 6 ; vertical line 6 units to the left of the pole  D)     x ^ { 2 } + ( y + 3 )  ^ { 2 } = 9 ; circle, radius 3 center at  ( 0 , - 3 )   in rectangular coordinates
y=6y = - 6 ; horizontal line 6 units
below the pole

C)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r \sec \theta = - 6     A)     ( x + 3 )  ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3  center  ( - 3,0 )   in rectangular coordinates  B)     y = - 6 ; horizontal line 6 units below the pole  C)     x = - 6 ; vertical line 6 units to the left of the pole  D)     x ^ { 2 } + ( y + 3 )  ^ { 2 } = 9 ; circle, radius 3 center at  ( 0 , - 3 )   in rectangular coordinates
x=6x = - 6 ; vertical line 6 units
to the left of the pole

D)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r \sec \theta = - 6     A)     ( x + 3 )  ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3  center  ( - 3,0 )   in rectangular coordinates  B)     y = - 6 ; horizontal line 6 units below the pole  C)     x = - 6 ; vertical line 6 units to the left of the pole  D)     x ^ { 2 } + ( y + 3 )  ^ { 2 } = 9 ; circle, radius 3 center at  ( 0 , - 3 )   in rectangular coordinates
x2+(y+3) 2=9x ^ { 2 } + ( y + 3 ) ^ { 2 } = 9 ; circle, radius 3
center at (0,3) ( 0 , - 3 ) in rectangular coordinates

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions