Solved

State Whether the Vectors Are Parallel, Orthogonal, or Neither v=i+5j,w=i+j\mathrm { v } = \mathrm { i } + 5 \mathrm { j } , \quad \mathbf { w } = \mathrm { i } + \mathrm { j }

Question 107

Multiple Choice

State whether the vectors are parallel, orthogonal, or neither.
- v=i+5j,w=i+j\mathrm { v } = \mathrm { i } + 5 \mathrm { j } , \quad \mathbf { w } = \mathrm { i } + \mathrm { j }


A) v1=72i+72j,v2=52i+32j\mathbf { v } _ { 1 } = \frac { 7 } { 2 } \mathrm { i } + \frac { 7 } { 2 } \mathrm { j } , \mathrm { v } _ { 2 } = - \frac { 5 } { 2 } \mathrm { i } + \frac { 3 } { 2 } \mathrm { j }
B) v1=3i+3j) ,v2=2i+2j\left. \mathbf { v } _ { 1 } = 3 \mathbf { i } + 3 \mathbf { j } \right) , \mathbf { v } _ { 2 } = - 2 \mathbf { i } + 2 \mathbf { j }
C) v1=6i+6j,v2=4i+4j\mathbf { v } _ { 1 } = 6 \mathbf { i } + 6 \mathbf { j } , \mathbf { v } _ { 2 } = - 4 \mathbf { i } + 4 \mathbf { j }
D) v1=3i+3j,v2=2i2j\mathbf { v } _ { 1 } = 3 \mathbf { i } + 3 \mathbf { j } , \mathbf { v } _ { 2 } = 2 \mathbf { i } - 2 \mathbf { j }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions