Solved

Write the Trigonometric Expression as an Algebraic Expression Containing U cos(tan1u+tan1v)\cos \left( \tan ^ { - 1 } \mathrm { u } + \tan ^ { - 1 } \mathrm { v } \right)

Question 4

Multiple Choice

Write the trigonometric expression as an algebraic expression containing u and v.
- cos(tan1u+tan1v) \cos \left( \tan ^ { - 1 } \mathrm { u } + \tan ^ { - 1 } \mathrm { v } \right)


A) 1+uvu2+1v2+1\frac { 1 + u v } { \sqrt { u ^ { 2 } + 1 } \cdot \sqrt { v ^ { 2 } + 1 } }

B) 1uvu2+1v2+1\frac { 1 - u v } { \sqrt { u ^ { 2 } + 1 } \cdot \sqrt { v ^ { 2 } + 1 } }

C) u+vu2+1v2+1\frac { \mathrm { u } + \mathrm { v } } { \sqrt { \mathrm { u } ^ { 2 } + 1 } \cdot \sqrt { \mathrm { v } ^ { 2 } + 1 } }

D) u2+1v2+11uv\frac { \sqrt { u ^ { 2 } + 1 } \cdot \sqrt { v ^ { 2 } + 1 } } { 1 - u v }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions