Solved

Solve the Problem Find a Sinusoidal Function of the Form y=Asin(ωxφ)+By = A \sin ( \omega x - \varphi ) + B

Question 115

Multiple Choice

Solve the problem.
-A town's average monthly temperature data is represented in the table below:  Month, x  Average Monthl  Temperature,  January, 127.9 February, 2 30.1 March, 339.8 April, 455.8 May, 5 70.4 June, 679.9 July, 782.6 August, 877.9 September, 977.9 October, 1056.3 November, 1143.4 December, 1231.1\begin{array} { l | c } { \text { Month, x } } & \begin{array} { c } \text { Average Monthl } \\\text { Temperature, }\end{array} \\\hline \text { January, } 1 & 27.9 \\\text { February, 2 } & 30.1 \\\text { March, } 3 & 39.8 \\\text { April, } 4 & 55.8 \\\text { May, 5 } & 70.4 \\\text { June, } 6 & 79.9 \\\text { July, } 7 & 82.6 \\\text { August, } 8 & 77.9 \\\text { September, } 9 & 77.9 \\\text { October, } 10 & 56.3 \\\text { November, } 11 & 43.4 \\\text { December, } 12 & 31.1\end{array} Find a sinusoidal function of the form y=Asin(ωxφ) +By = A \sin ( \omega x - \varphi ) + B that fits the data.


A) y=82.6sin(π6x2π3) +27.9y = 82.6 \sin \left( \frac { \pi } { 6 } x - \frac { 2 \pi } { 3 } \right) + 27.9
B) y=27.9sin(π6xπ4) +82.6y = 27.9 \sin \left( \frac { \pi } { 6 } x - \frac { \pi } { 4 } \right) + 82.6
C) y=55.25sin(π6xπ4) +27.35y = 55.25 \sin \left( \frac { \pi } { 6 } x - \frac { \pi } { 4 } \right) + 27.35
D) y=27.35sin(π6x2π3) +55.25y = 27.35 \sin \left( \frac { \pi } { 6 } x - \frac { 2 \pi } { 3 } \right) + 55.25

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions