Solved

Solve the Problem S(r)=4πr2\mathrm { S } ( \mathrm { r } ) = 4 \pi \mathrm { r } ^ { 2 }

Question 120

Multiple Choice

Solve the problem.
-The surface area of a balloon is given by S(r) =4πr2\mathrm { S } ( \mathrm { r } ) = 4 \pi \mathrm { r } ^ { 2 } , where r\mathrm { r } is the radius of the balloon. If the radius is increasing with time tt , as the balloon is being blown up, according to the formula r(t) =23t3,t0r ( t ) = \frac { 2 } { 3 } t { } ^ { 3 } , t \geq 0 , find the surface area SS as a function of the time t.t .


A) S(r(t) ) =169πt6S ( r ( t ) ) = \frac { 16 } { 9 } \pi t ^ { 6 }
B) S(r(t) ) =169πt9S ( r ( t ) ) = \frac { 16 } { 9 } \pi t ^ { 9 }
C) S(r(t) ) =49πt6S ( r ( t ) ) = \frac { 4 } { 9 } \pi t ^ { 6 }
D) S(r(t) ) =169πt3S ( r ( t ) ) = \frac { 16 } { 9 } \pi t ^ { 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions