Solved

The Graph of a Piecewise-Defined Function Is Given B) C) f(x)={x+1 if 0x312x if 3<x5f ( x ) = \left\{ \begin{array} { l l } x + 1 & \text { if } 0 \leq x \leq 3 \\ \frac { 1 } { 2 } x & \text { if } 3 < x \leq 5 \end{array} \right.

Question 4

Multiple Choice

The graph of a piecewise-defined function is given. Write a definition for the function.
- The graph of a piecewise-defined function is given. Write a definition for the function. -  A)   f ( x )  = \left\{ \begin{array} { l l } x + 1 & \text { if } 0 \leq x \leq 3 \\ \frac { 1 } { 2 } x + \frac { 1 } { 2 } & \text { if } 3 < x \leq 5 \end{array} \right.  B)   f ( x )  = \left\{ \begin{array} { l l } x + 1 & \text { if } 0 \leq x \leq 3 \\ \frac { 1 } { 2 } x - \frac { 1 } { 2 } & \text { if } 3 < x \leq 5 \end{array} \right.  C)   f ( x )  = \left\{ \begin{array} { l l } x + 1 & \text { if } 0 \leq x \leq 3 \\ \frac { 1 } { 2 } x & \text { if } 3 < x \leq 5 \end{array} \right.  D)   f ( x )  = \left\{ \begin{array} { l l } x + 1 & \text { if } 0 \leq x \leq 3 \\ \frac { 1 } { 2 } x + 2 & \text { if } 3 < x \leq 5 \end{array} \right. A)
f(x) ={x+1 if 0x312x+12 if 3<x5f ( x ) = \left\{ \begin{array} { l l } x + 1 & \text { if } 0 \leq x \leq 3 \\ \frac { 1 } { 2 } x + \frac { 1 } { 2 } & \text { if } 3 < x \leq 5 \end{array} \right.
B)
f(x) ={x+1 if 0x312x12 if 3<x5f ( x ) = \left\{ \begin{array} { l l } x + 1 & \text { if } 0 \leq x \leq 3 \\ \frac { 1 } { 2 } x - \frac { 1 } { 2 } & \text { if } 3 < x \leq 5 \end{array} \right.
C)
f(x) ={x+1 if 0x312x if 3<x5f ( x ) = \left\{ \begin{array} { l l } x + 1 & \text { if } 0 \leq x \leq 3 \\ \frac { 1 } { 2 } x & \text { if } 3 < x \leq 5 \end{array} \right.
D)
f(x) ={x+1 if 0x312x+2 if 3<x5f ( x ) = \left\{ \begin{array} { l l } x + 1 & \text { if } 0 \leq x \leq 3 \\ \frac { 1 } { 2 } x + 2 & \text { if } 3 < x \leq 5 \end{array} \right.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions