Solved

The Graph of a Piecewise-Defined Function Is Given f(x)={34x+4 if 3x032x if x>0f(x)=\left\{\begin{array}{ll}\frac{3}{4} x+4 & \text { if }-3 \leq x \leq 0 \\\frac{3}{2} x & \text { if } x>0\end{array}\right.

Question 174

Multiple Choice

The graph of a piecewise-defined function is given. Write a definition for the function.
- The graph of a piecewise-defined function is given. Write a definition for the function. -  A)   f(x) =\left\{\begin{array}{ll} \frac{3}{4} x+4 & \text { if }-3 \leq x \leq 0 \\ \frac{3}{2} x & \text { if } x>0 \end{array}\right.   B)   f(x) =\left\{\begin{array}{ll} \frac{4}{3} x+4 & \text { if }-3 \leq x \leq 0 \\ \frac{2}{3} x & \text { if } x>0 \end{array}\right.   C)   f(x) =\left\{\begin{array}{ll} \frac{3}{4} x+4 & \text { if }-3 \leq x \leq 0 \\ \frac{3}{2} x & \text { if } x \geq 0 \end{array}\right.   D)   f(x) =\left\{\begin{array}{ll} \frac{4}{3} x+4 & \text { if }-3 \leq x \leq 0 \\ \frac{2}{3} x & \text { if } 0<x \leq 3  \end{array}\right.    A)
f(x) ={34x+4 if 3x032x if x>0f(x) =\left\{\begin{array}{ll}\frac{3}{4} x+4 & \text { if }-3 \leq x \leq 0 \\\frac{3}{2} x & \text { if } x>0\end{array}\right.

B)
f(x) ={43x+4 if 3x023x if x>0f(x) =\left\{\begin{array}{ll}\frac{4}{3} x+4 & \text { if }-3 \leq x \leq 0 \\\frac{2}{3} x & \text { if } x>0\end{array}\right.

C)
f(x) ={34x+4 if 3x032x if x0f(x) =\left\{\begin{array}{ll}\frac{3}{4} x+4 & \text { if }-3 \leq x \leq 0 \\\frac{3}{2} x & \text { if } x \geq 0\end{array}\right.

D)
f(x) ={43x+4 if 3x023x if 0lt;x3f(x) =\left\{\begin{array}{ll}\frac{4}{3} x+4 & \text { if }-3 \leq x \leq 0 \\\frac{2}{3} x & \text { if } 0&lt;x \leq 3\end{array}\right.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions