Solved

Use the Gauss-Jordan Method to Solve the System of Equations x8y+z=63xy+2z=7\begin{array} { l } x - 8 y + z = 6 \\3 x - y + 2 z = 7\end{array}

Question 32

Multiple Choice

Use the Gauss-Jordan method to solve the system of equations. If the system has infinitely many solutions, let the last
variable be the arbitrary variable.
- x8y+z=63xy+2z=7\begin{array} { l } x - 8 y + z = 6 \\3 x - y + 2 z = 7\end{array}


A) {(5023,1123,1) }\left\{ \left( \frac { 50 } { 23 } , - \frac { 11 } { 23 } , 1 \right) \right\}
B) \varnothing
C) {(5015z25,11+z25,z) }\left\{ \left( \frac { - 50 - 15 z } { 25 } , \frac { 11 + z } { 25 } , z \right) \right\}
D) {(5015z23,11+z23,z) }\left\{ \left( \frac { 50 - 15 z } { 23 } , \frac { - 11 + z } { 23 } , z \right) \right\}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions