Solved

Solve the Inequality (3x1)(x+6)0( 3 x - 1 ) ( x + 6 ) \leq 0

Question 225

Multiple Choice

Solve the inequality. Graph the solution set and write the solution set in interval notation.
- (3x1) (x+6) 0( 3 x - 1 ) ( x + 6 ) \leq 0
 Solve the inequality. Graph the solution set and write the solution set in interval notation. - ( 3 x - 1 )  ( x + 6 )  \leq 0     A)   \left[ - \infty , \frac { 1 } { 3 } \right]    B)   [ - 6 , \infty )     C)   \left[ - 6 , \frac { 1 } { 3 } \right]    D)   ( - \infty , - 6 ] \cup \left[ \frac { 1 } { 3 } , \infty \right]


A) [,13]\left[ - \infty , \frac { 1 } { 3 } \right]
 Solve the inequality. Graph the solution set and write the solution set in interval notation. - ( 3 x - 1 )  ( x + 6 )  \leq 0     A)   \left[ - \infty , \frac { 1 } { 3 } \right]    B)   [ - 6 , \infty )     C)   \left[ - 6 , \frac { 1 } { 3 } \right]    D)   ( - \infty , - 6 ] \cup \left[ \frac { 1 } { 3 } , \infty \right]
B) [6,) [ - 6 , \infty )
 Solve the inequality. Graph the solution set and write the solution set in interval notation. - ( 3 x - 1 )  ( x + 6 )  \leq 0     A)   \left[ - \infty , \frac { 1 } { 3 } \right]    B)   [ - 6 , \infty )     C)   \left[ - 6 , \frac { 1 } { 3 } \right]    D)   ( - \infty , - 6 ] \cup \left[ \frac { 1 } { 3 } , \infty \right]
C) [6,13]\left[ - 6 , \frac { 1 } { 3 } \right]
 Solve the inequality. Graph the solution set and write the solution set in interval notation. - ( 3 x - 1 )  ( x + 6 )  \leq 0     A)   \left[ - \infty , \frac { 1 } { 3 } \right]    B)   [ - 6 , \infty )     C)   \left[ - 6 , \frac { 1 } { 3 } \right]    D)   ( - \infty , - 6 ] \cup \left[ \frac { 1 } { 3 } , \infty \right]
D) (,6][13,]( - \infty , - 6 ] \cup \left[ \frac { 1 } { 3 } , \infty \right]
 Solve the inequality. Graph the solution set and write the solution set in interval notation. - ( 3 x - 1 )  ( x + 6 )  \leq 0     A)   \left[ - \infty , \frac { 1 } { 3 } \right]    B)   [ - 6 , \infty )     C)   \left[ - 6 , \frac { 1 } { 3 } \right]    D)   ( - \infty , - 6 ] \cup \left[ \frac { 1 } { 3 } , \infty \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions