Solved

Solve the Inequality (3z+4)(2z7)0( 3 z + 4 ) ( 2 z - 7 ) \leq 0

Question 227

Multiple Choice

Solve the inequality. Graph the solution set and write the solution set in interval notation.
- (3z+4) (2z7) 0( 3 z + 4 ) ( 2 z - 7 ) \leq 0
 Solve the inequality. Graph the solution set and write the solution set in interval notation. - ( 3 z + 4 )  ( 2 z - 7 )  \leq 0    A)   \left( - \infty , - \frac { 4 } { 3 } \right] \cup \left[ \frac { 7 } { 2 } , \infty \right)     B)   \left[ - \frac { 4 } { 3 } , \frac { 7 } { 2 } \right]    C)   \left( - \infty , - \frac { 4 } { 3 } \right)  \cup \left( \frac { 7 } { 2 } , \infty \right)     D)   \left( - \frac { 4 } { 3 } , \frac { 7 } { 2 } \right)


A) (,43][72,) \left( - \infty , - \frac { 4 } { 3 } \right] \cup \left[ \frac { 7 } { 2 } , \infty \right)
 Solve the inequality. Graph the solution set and write the solution set in interval notation. - ( 3 z + 4 )  ( 2 z - 7 )  \leq 0    A)   \left( - \infty , - \frac { 4 } { 3 } \right] \cup \left[ \frac { 7 } { 2 } , \infty \right)     B)   \left[ - \frac { 4 } { 3 } , \frac { 7 } { 2 } \right]    C)   \left( - \infty , - \frac { 4 } { 3 } \right)  \cup \left( \frac { 7 } { 2 } , \infty \right)     D)   \left( - \frac { 4 } { 3 } , \frac { 7 } { 2 } \right)
B) [43,72]\left[ - \frac { 4 } { 3 } , \frac { 7 } { 2 } \right]
 Solve the inequality. Graph the solution set and write the solution set in interval notation. - ( 3 z + 4 )  ( 2 z - 7 )  \leq 0    A)   \left( - \infty , - \frac { 4 } { 3 } \right] \cup \left[ \frac { 7 } { 2 } , \infty \right)     B)   \left[ - \frac { 4 } { 3 } , \frac { 7 } { 2 } \right]    C)   \left( - \infty , - \frac { 4 } { 3 } \right)  \cup \left( \frac { 7 } { 2 } , \infty \right)     D)   \left( - \frac { 4 } { 3 } , \frac { 7 } { 2 } \right)
C) (,43) (72,) \left( - \infty , - \frac { 4 } { 3 } \right) \cup \left( \frac { 7 } { 2 } , \infty \right)
 Solve the inequality. Graph the solution set and write the solution set in interval notation. - ( 3 z + 4 )  ( 2 z - 7 )  \leq 0    A)   \left( - \infty , - \frac { 4 } { 3 } \right] \cup \left[ \frac { 7 } { 2 } , \infty \right)     B)   \left[ - \frac { 4 } { 3 } , \frac { 7 } { 2 } \right]    C)   \left( - \infty , - \frac { 4 } { 3 } \right)  \cup \left( \frac { 7 } { 2 } , \infty \right)     D)   \left( - \frac { 4 } { 3 } , \frac { 7 } { 2 } \right)
D) (43,72) \left( - \frac { 4 } { 3 } , \frac { 7 } { 2 } \right)
 Solve the inequality. Graph the solution set and write the solution set in interval notation. - ( 3 z + 4 )  ( 2 z - 7 )  \leq 0    A)   \left( - \infty , - \frac { 4 } { 3 } \right] \cup \left[ \frac { 7 } { 2 } , \infty \right)     B)   \left[ - \frac { 4 } { 3 } , \frac { 7 } { 2 } \right]    C)   \left( - \infty , - \frac { 4 } { 3 } \right)  \cup \left( \frac { 7 } { 2 } , \infty \right)     D)   \left( - \frac { 4 } { 3 } , \frac { 7 } { 2 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions