Solved

In a Continuous Uniform Distribution μ= minimum + maximum 2 and σ= range 12\mu = \frac { \text { minimum } + \text { maximum } } { 2 } \text { and } \sigma = \frac { \text { range } } { \sqrt { 12 } }

Question 47

Multiple Choice

In a continuous uniform distribution,
μ= minimum + maximum 2 and σ= range 12\mu = \frac { \text { minimum } + \text { maximum } } { 2 } \text { and } \sigma = \frac { \text { range } } { \sqrt { 12 } }
Find the mean and standard deviation for a uniform distribution having a minimum of 1- 1 and a maximum of 14.


A) μ=6.5,σ=3.75\mu = 6.5 , \sigma = 3.75
B) μ=7.5,σ=4.33\mu = 7.5 , \sigma = 4.33
C) μ=6.5,σ=4.33\mu = 6.5 , \sigma = 4.33

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions