Solved

Solve the Problem P(t)=a8cos(2nπct)\mathrm { P } ( \mathrm { t } ) = \frac { \mathrm { a } } { 8 } \cos ( 2 \mathrm { n } \pi - \mathrm { ct } )

Question 136

Multiple Choice

Solve the problem.
-In a particular situation, the pressure, P, exerted on a person's eardrum at a distance of 8 feet from the source is given by the function: P(t) =a8cos(2nπct) \mathrm { P } ( \mathrm { t } ) = \frac { \mathrm { a } } { 8 } \cos ( 2 \mathrm { n } \pi - \mathrm { ct } ) , where n\mathrm { n } is a positive integer. Use the difference identity for cosine to simplify P\mathrm { P } in this situation.


A) P(t) =a8cos(ct) \mathrm { P } ( \mathrm { t } ) = \frac { \mathrm { a } } { 8 } \cos ( \mathrm { ct } )
B) P(t) =89cos(ct+8) \mathrm { P } ( \mathrm { t } ) = \frac { 8 } { 9 } \cos ( \mathrm { ct } + 8 )
C) P(t) =a8cos(ct) a8sin(ct) \mathrm { P } ( \mathrm { t } ) = \frac { \mathrm { a } } { 8 } \cos ( \mathrm { ct } ) - \frac { \mathrm { a } } { 8 } \sin ( \mathrm { ct } )
D) P(t) =cos(ct) \mathrm { P } ( \mathrm { t } ) = \cos ( \mathrm { ct } )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions