Solved

Use the Cofunction Identities to Find an Angle That Makes V=158cos(2πftπ6)\mathrm { V } = 158 \cos \left( 2 \pi \mathrm { ft } - \frac { \pi } { 6 } \right)

Question 140

Multiple Choice

Use the cofunction identities to find an angle that makes the statement true.
-The output voltage of a generator is given by V=158cos(2πftπ6) \mathrm { V } = 158 \cos \left( 2 \pi \mathrm { ft } - \frac { \pi } { 6 } \right) . Express the voltage as the sum of a sine and a cosine function.


A) V=793cos2πft+79sin2πftV = 79 \sqrt { 3 } \cos 2 \pi \mathrm { ft } + 79 \sin 2 \pi \mathrm { ft }
B) V=793sin2πft+79cos2πftV = 79 \sqrt { 3 } \sin 2 \pi \mathrm { ft } + 79 \cos 2 \pi \mathrm { ft }
C) V=79cos2πft+79sin2πftV = 79 \cos 2 \pi \mathrm { ft } + 79 \sin 2 \pi \mathrm { ft }
D) V=793cos2πft79sin2πftV = 79 \sqrt { 3 } \cos 2 \pi \mathrm { ft } - 79 \sin 2 \pi \mathrm { ft }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions