Solved

Solve the Problem L\mathrm { L } Of a Highway Sag Curve Can Be Computed By

Question 34

Multiple Choice

Solve the problem.
-The minimum length L\mathrm { L } of a highway sag curve can be computed by
L=(θ2θ1) S2200( h+Stanα) \mathrm { L } = \frac { \left( \theta _ { 2 } - \theta _ { 1 } \right) \mathrm { S } ^ { 2 } } { 200 ( \mathrm {~h} + \mathrm { S } \tan \alpha ) }
where θ1\theta _ { 1 } is the downhill grade in degrees (θ1<0) ,θ2\left( \theta _ { 1 } < 0 ^ { \circ } \right) , \theta _ { 2 } is the uphill grade in degrees (θ2>0) \left( \theta _ { 2 } > 0 ^ { \circ } \right) , S\mathrm { S } is the safe stopping distance for a given speed limit, hh is the height of the headlights, and α\alpha is the alignment of the headlights in degrees. Compute LL for a 55-mph speed limit, where h=1.9fth = 1.9 \mathrm { ft } , α=0.7,θ1=5,θ2=4\alpha = 0.7 ^ { \circ } , \theta _ { 1 } = - 5 ^ { \circ } , \theta _ { 2 } = 4 ^ { \circ } , and S=336ftS = 336 \mathrm { ft } . Round your answer to the nearest foot.


A) 824ft824 \mathrm { ft }
B) 893ft893 \mathrm { ft }
C) 846ft846 \mathrm { ft }
D) 869ft869 \mathrm { ft }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions