Solved

Solve the Problem L\mathrm { L } , When Displaced Horizontally and Released, Oscillates with Harmonic Motion

Question 29

Multiple Choice

Solve the problem.
-A pendulum of length L\mathrm { L } , when displaced horizontally and released, oscillates with harmonic motion according to the equation y=Asin((g/L) t+π/2) \mathrm { y } = \mathrm { A } \sin ( ( \sqrt { \mathrm { g } / \mathrm { L } } ) \mathrm { t } + \pi / 2 ) , where y\mathrm { y } is the distance in meters from the rest position tt seconds after release, and g=9.8 m/sec2g = 9.8 \mathrm {~m} / \mathrm { sec } ^ { 2 } . Identify the period, amplitude, and phase shift when A=0.39 m\mathrm { A } = 0.39 \mathrm {~m} and L=0.49 m\mathrm { L } = 0.49 \mathrm {~m} . Round all answers to the nearest hundredth.


A) 0.70sec,0.39 m,0.700.70 \mathrm { sec } , 0.39 \mathrm {~m} , - 0.70 units to the left
B) 1.41sec,0.39 m,0.351.41 \mathrm { sec } , 0.39 \mathrm {~m} , 0.35 units to the right
C) 0.31sec,0.39 m,0.0790.31 \mathrm { sec } , 0.39 \mathrm {~m} , - 0.079 units to the left
D) 1.41sec,0.39 m,0.351.41 \mathrm { sec } , 0.39 \mathrm {~m} , - 0.35 units to the left

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions