Solved

Use Gauss-Jordan Elimination to Solve the Linear System and Determine x+y+z=92x3y+4z=7x4y+3z=2\begin{array} { r r } x + y + z & = 9 \\2 x - 3 y + 4 z & = 7 \\x - 4 y + 3 z & = - 2\end{array}

Question 155

Multiple Choice

Use Gauss-Jordan elimination to solve the linear system and determine whether the system has a unique solution, no solution, or infinitely many solutions. If the system has infinitely many solutions, describe the solution as an ordered
triple involving variable z.
- x+y+z=92x3y+4z=7x4y+3z=2\begin{array} { r r } x + y + z & = 9 \\2 x - 3 y + 4 z & = 7 \\x - 4 y + 3 z & = - 2\end{array}


A) (7z5+345,2z5+115,z) \left( - \frac { 7 z } { 5 } + \frac { 34 } { 5 } , \frac { 2 z } { 5 } + \frac { 11 } { 5 } , z \right)
B) (7z5+345,2z5115,z) \left( \frac { 7 z } { 5 } + \frac { 34 } { 5 } , \frac { 2 z } { 5 } - \frac { 11 } { 5 } , z \right)
C) (7z5+345,2z5115,z) \left( - \frac { 7 z } { 5 } + \frac { 34 } { 5 } , \frac { 2 z } { 5 } - \frac { 11 } { 5 } , z \right)
D) (z5+345,2z5+115,z) \left( \frac { z } { 5 } + \frac { 34 } { 5 } , \frac { 2 z } { 5 } + \frac { 11 } { 5 } , z \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions