Solved

Use Gauss-Jordan Elimination to Solve the Linear System and Determine 5xy+z=87x+y+z=6\begin{array} { l } 5 x - y + z = 8 \\7 x + y + z = 6\end{array}

Question 159

Multiple Choice

Use Gauss-Jordan elimination to solve the linear system and determine whether the system has a unique solution, no solution, or infinitely many solutions. If the system has infinitely many solutions, describe the solution as an ordered
triple involving variable z.
- 5xy+z=87x+y+z=6\begin{array} { l } 5 x - y + z = 8 \\7 x + y + z = 6\end{array}


A) no solution
B) (z+3,4z+7,z) ( - z + 3,4 z + 7 , z )
C) (16z+76,16z,z) \left( \frac { 1 } { 6 } z + \frac { 7 } { 6 } , \frac { 1 } { 6 } z , z \right)
D) (16z+76,16z136,z) \left( - \frac { 1 } { 6 } z + \frac { 7 } { 6 } , \frac { 1 } { 6 } z - \frac { 13 } { 6 } , z \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions