Solved

Find the Center, Transverse Axis, Vertices, Foci, and Asymptotes of the Hyperbola

Question 37

Multiple Choice

Find the center, transverse axis, vertices, foci, and asymptotes of the hyperbola.
- (x+4) 216(y+3) 236=1\frac { ( x + 4 ) ^ { 2 } } { 16 } - \frac { ( y + 3 ) ^ { 2 } } { 36 } = 1


A) center at (4,3) ( - 4 , - 3 )
transverse axis is parallel to xx -axis
vertices at (10,3) ( - 10 , - 3 ) and (2,3) ( 2 , - 3 )
foci at (4213,3) ( - 4 - 2 \sqrt { 13 } , - 3 ) and (4+213,3) ( - 4 + 2 \sqrt { 13 } , - 3 )
asymptotes of y+3=23(x+4) y + 3 = - \frac { 2 } { 3 } ( x + 4 ) and y+3=23(x+4) y + 3 = \frac { 2 } { 3 } ( x + 4 )
B) center at (4,3) ( - 4 , - 3 )
transverse axis is parallel to xx -axis
vertices at (8,3) ( - 8 , - 3 ) and (0,3) ( 0 , - 3 )
foci at (4213,3) ( - 4 - 2 \sqrt { 13 } , - 3 ) and (4+213,3) ( - 4 + 2 \sqrt { 13 } , - 3 )
asymptotes of y+3=32(x+4) y + 3 = - \frac { 3 } { 2 } ( x + 4 ) and y+3=32(x+4) y + 3 = \frac { 3 } { 2 } ( x + 4 )
C) center at (3,4) ( - 3 , - 4 )
transverse axis is parallel to xx -axis
vertices at (7,4) ( - 7 , - 4 ) and (1,4) ( 1 , - 4 )
foci at (3213,4) ( - 3 - 2 \sqrt { 13 } , - 4 ) and (3+213,4) ( - 3 + 2 \sqrt { 13 } , - 4 )
asymptotes of y+4=32(x+3) y + 4 = - \frac { 3 } { 2 } ( x + 3 ) and y+4=32(x+3) y + 4 = \frac { 3 } { 2 } ( x + 3 )
D) center at (4,3) ( - 4 , - 3 )
transverse axis is parallel to y\mathrm { y } -axis
vertices at (4,7) ( - 4 , - 7 ) and (4,1) ( - 4,1 )
foci at (4,3213) ( - 4 , - 3 - 2 \sqrt { 13 } ) and (4,3+213) ( - 4 , - 3 + 2 \sqrt { 13 } )
asymptotes of y3=23(x4) y - 3 = - \frac { 2 } { 3 } ( x - 4 ) and y3=23(x4) y - 3 = \frac { 2 } { 3 } ( x - 4 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions