Solved

Find the Center, Transverse Axis, Vertices, Foci, and Asymptotes of the Hyperbola

Question 36

Multiple Choice

Find the center, transverse axis, vertices, foci, and asymptotes of the hyperbola.
- (x1) 24(y2) 2=4( x - 1 ) ^ { 2 } - 4 ( y - 2 ) ^ { 2 } = 4


A) center at (1,2) ( 1,2 )
transverse axis is parallel to y\mathrm { y } -axis
vertices at (1,0) ( 1,0 ) and (1,4) ( 1,4 ) ,
foci at (1,25) ( 1,2 - \sqrt { 5 } ) and (1,2+5) ( 1,2 + \sqrt { 5 } ) ,
asymptotes of y+2=2(x+1) y + 2 = - 2 ( x + 1 ) and y+2=2(x+1) y + 2 = 2 ( x + 1 )
B) center at (1,2) ( 1,2 )
transverse axis is parallel to xx -axis
vertices at (0,2) ( 0,2 ) and (2,2) ( 2,2 )
foci at (15,2) ( 1 - \sqrt { 5 } , 2 ) and (1+5,2) ( 1 + \sqrt { 5 } , 2 )
asymptotes of y2=2(x1) y - 2 = - 2 ( x - 1 ) and y2=2(x1) y - 2 = 2 ( x - 1 )
C) center at (1,2) ( 1,2 )
transverse axis is parallel to xx -axis
vertices at (1,2) ( - 1,2 ) and (3,2) ( 3,2 )
foci at (15,2) ( 1 - \sqrt { 5 } , 2 ) and (1+5,2) ( 1 + \sqrt { 5 } , 2 )
asymptotes of y2=12(x1) y - 2 = - \frac { 1 } { 2 } ( x - 1 ) and y2=12(x1) y - 2 = \frac { 1 } { 2 } ( x - 1 )
D) center at (2,1) ( 2,1 )
transverse axis is parallel to xx -axis
vertices at (0,1) ( 0,1 ) and (4,1) ( 4,1 )
foci at (25,1) ( 2 - \sqrt { 5 } , 1 ) and (2+5,1) ( 2 + \sqrt { 5 } , 1 )
asymptotes of y1=12(x2) y - 1 = - \frac { 1 } { 2 } ( x - 2 ) and y1=12(x2) y - 1 = \frac { 1 } { 2 } ( x - 2 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions