Solved

Find the Center, Transverse Axis, Vertices, Foci, and Asymptotes of the Hyperbola

Question 10

Multiple Choice

Find the center, transverse axis, vertices, foci, and asymptotes of the hyperbola.
- (y1) 24(x3) 249=1\frac { ( y - 1 ) ^ { 2 } } { 4 } - \frac { ( x - 3 ) ^ { 2 } } { 49 } = 1


A) center: (3,1) ( 3,1 )
transverse axis is parallel to y\mathrm { y } -axis
vertices: (3,153) ( 3,1 - \sqrt { 53 } ) and (3,1+53) ( 3,1 + \sqrt { 53 } ) ;
foci: (3,1) ( 3 , - 1 ) and (3,3) ( 3,3 )
asymptotes of y1=72(x3) y - 1 = - \frac { 7 } { 2 } ( x - 3 ) and y1=72(x3) y - 1 = \frac { 7 } { 2 } ( x - 3 )
B) center: (3,1) ( 3,1 )
transverse axis is parallel to y\mathrm { y } -axis
vertices: (1,0) ( 1,0 ) and (4,4) ( 4,4 )
foci: (1,253) ( 1,2 - \sqrt { 53 } ) and (4,2+53) ( 4,2 + \sqrt { 53 } )
asymptotes of y1=72(x3) y - 1 = - \frac { 7 } { 2 } ( x - 3 ) and y1=72(x3) y - 1 = \frac { 7 } { 2 } ( x - 3 )
C) center: (3,1) ( 3,1 )
transverse axis is parallel to yy -axis
vertices: (3,1) ( 3 , - 1 ) and (3,3) ( 3,3 )
foci: (3,153) ( 3,1 - \sqrt { 53 } ) and (3,1+53) ( 3,1 + \sqrt { 53 } )
asymptotes of y1=27(x3) \mathrm { y } - 1 = - \frac { 2 } { 7 } ( x - 3 ) and y1=27(x3) y - 1 = \frac { 2 } { 7 } ( x - 3 )
D) center: (3,1) ( - 3 , - 1 )
transverse axis is parallel to xx -axis
vertices: (3,3) ( - 3 , - 3 ) and (3,1) ( - 3,1 )
foci: (3,153) ( - 3 , - 1 - \sqrt { 53 } ) and (3,1+53) ( - 3 , - 1 + \sqrt { 53 } )
asymptotes of y1=27(x3) y - 1 = - \frac { 2 } { 7 } ( x - 3 ) and y1=27(x3) y - 1 = \frac { 2 } { 7 } ( x - 3 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions