Solved

Find the Center, Transverse Axis, Vertices, Foci, and Asymptotes of the Hyperbola

Question 8

Multiple Choice

Find the center, transverse axis, vertices, foci, and asymptotes of the hyperbola.
- (y+2) 29(x4) 2=9( y + 2 ) ^ { 2 } - 9 ( x - 4 ) ^ { 2 } = 9


A) center: (4,2) ( 4 , - 2 )
transverse axis is parallel to y\mathrm { y } -axis
vertices: (4,5) ( 4 , - 5 ) and (4,1) ( 4,1 )
foci: (4,210) ( 4 , - 2 - \sqrt { 10 } ) and (4,2+10) ( 4 , - 2 + \sqrt { 10 } )
asymptotes of y+2=3(x4) y + 2 = - 3 ( x - 4 ) and y+2=3(x4) y + 2 = 3 ( x - 4 )
B) center: (4,2) ( - 4,2 )
transverse axis is parallel to y\mathrm { y } -axis
vertices: (4,1) ( - 4 , - 1 ) and (4,5) ( - 4,5 )
foci: (4,210) ( - 4,2 - \sqrt { 10 } ) and (4,2+10) ( - 4,2 + \sqrt { 10 } )
asymptotes of y+2=3(x4) y + 2 = - 3 ( x - 4 ) and y+2=3(x4) y + 2 = 3 ( x - 4 )
C) center: (4,2) ( 4 , - 2 )
transverse axis is parallel to y\mathrm { y } -axis
vertices: (5,4) ( 5 , - 4 ) and (5,2) ( 5,2 )
foci: (5,110) ( 5 , - 1 - \sqrt { 10 } ) and (5,1+10) ( 5 , - 1 + \sqrt { 10 } )
asymptotes of y+2=13(x4) y + 2 = - \frac { 1 } { 3 } ( x - 4 ) and y+2=13(x4) y + 2 = \frac { 1 } { 3 } ( x - 4 )
D) center: (4,2) ( 4 , - 2 )
transverse axis is parallel to x\mathrm { x } -axis
vertices: (4,3) ( - 4 , - 3 ) and (4,3) ( 4,3 )
foci: (4,10) ( 4 , - \sqrt { 10 } ) and (4,10) ( 4 , \sqrt { 10 } )
asymptotes of y+2=3(x4) y + 2 = - 3 ( x - 4 ) and y+2=3(x4) y + 2 = 3 ( x - 4 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions