Solved

For the Following Rational Function, Identify the Coordinates of All f(x)=(x29)(x+5)(x225)(x+3)f ( x ) = \frac { \left( x ^ { 2 } - 9 \right) ( x + 5 ) } { \left( x ^ { 2 } - 25 \right) ( x + 3 ) }

Question 151

Multiple Choice

For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes.
- f(x) =(x29) (x+5) (x225) (x+3) f ( x ) = \frac { \left( x ^ { 2 } - 9 \right) ( x + 5 ) } { \left( x ^ { 2 } - 25 \right) ( x + 3 ) }
 For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes. - f ( x )  = \frac { \left( x ^ { 2 } - 9 \right)  ( x + 5 )  } { \left( x ^ { 2 } - 25 \right)  ( x + 3 )  }    A)  removable discontinuity at  ( - 3,0 )  ;   x -intercept:  ( - 3,0 )  , y -intercept:  \left( 0 , \frac { 3 } { 5 } \right)   asymptotes:  x = - 5 , y = 1      B)  removable discontinuity at  ( - 3 , - 3 )  ;   x -intercept:  ( 3,0 )  , y -intercept:  \left( 0 , - \frac { 3 } { 5 } \right)  ;   asymptotes:  x = - 5 , y = 1     C)  removable discontinuities:  \left( - 5 , \frac { 4 } { 5 } \right)  , \left( - 3 , \frac { 3 } { 4 } \right)    x -intercept:  ( 3,0 )  , y -intercept:  \left( 0 , \frac { 3 } { 5 } \right)   asymptotes:  x = 5 , y = 1      D)  removable discontinuities:  \left( - 5 , \frac { 1 } { 5 } \right)  , ( - 3,0 )  ;   x -intercept:  ( - 3,0 )  , y -intercept:  \left( 0 , - \frac { 3 } { 5 } \right)    asymptotes:  x = 5 , y = 1


A) removable discontinuity at (3,0) ( - 3,0 ) ;
xx -intercept: (3,0) ,y( - 3,0 ) , y -intercept: (0,35) \left( 0 , \frac { 3 } { 5 } \right)
asymptotes: x=5,y=1x = - 5 , y = 1

 For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes. - f ( x )  = \frac { \left( x ^ { 2 } - 9 \right)  ( x + 5 )  } { \left( x ^ { 2 } - 25 \right)  ( x + 3 )  }    A)  removable discontinuity at  ( - 3,0 )  ;   x -intercept:  ( - 3,0 )  , y -intercept:  \left( 0 , \frac { 3 } { 5 } \right)   asymptotes:  x = - 5 , y = 1      B)  removable discontinuity at  ( - 3 , - 3 )  ;   x -intercept:  ( 3,0 )  , y -intercept:  \left( 0 , - \frac { 3 } { 5 } \right)  ;   asymptotes:  x = - 5 , y = 1     C)  removable discontinuities:  \left( - 5 , \frac { 4 } { 5 } \right)  , \left( - 3 , \frac { 3 } { 4 } \right)    x -intercept:  ( 3,0 )  , y -intercept:  \left( 0 , \frac { 3 } { 5 } \right)   asymptotes:  x = 5 , y = 1      D)  removable discontinuities:  \left( - 5 , \frac { 1 } { 5 } \right)  , ( - 3,0 )  ;   x -intercept:  ( - 3,0 )  , y -intercept:  \left( 0 , - \frac { 3 } { 5 } \right)    asymptotes:  x = 5 , y = 1
B) removable discontinuity at (3,3) ( - 3 , - 3 ) ;
xx -intercept: (3,0) ,y( 3,0 ) , y -intercept: (0,35) ;\left( 0 , - \frac { 3 } { 5 } \right) ;
asymptotes: x=5,y=1x = - 5 , y = 1
 For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes. - f ( x )  = \frac { \left( x ^ { 2 } - 9 \right)  ( x + 5 )  } { \left( x ^ { 2 } - 25 \right)  ( x + 3 )  }    A)  removable discontinuity at  ( - 3,0 )  ;   x -intercept:  ( - 3,0 )  , y -intercept:  \left( 0 , \frac { 3 } { 5 } \right)   asymptotes:  x = - 5 , y = 1      B)  removable discontinuity at  ( - 3 , - 3 )  ;   x -intercept:  ( 3,0 )  , y -intercept:  \left( 0 , - \frac { 3 } { 5 } \right)  ;   asymptotes:  x = - 5 , y = 1     C)  removable discontinuities:  \left( - 5 , \frac { 4 } { 5 } \right)  , \left( - 3 , \frac { 3 } { 4 } \right)    x -intercept:  ( 3,0 )  , y -intercept:  \left( 0 , \frac { 3 } { 5 } \right)   asymptotes:  x = 5 , y = 1      D)  removable discontinuities:  \left( - 5 , \frac { 1 } { 5 } \right)  , ( - 3,0 )  ;   x -intercept:  ( - 3,0 )  , y -intercept:  \left( 0 , - \frac { 3 } { 5 } \right)    asymptotes:  x = 5 , y = 1
C) removable discontinuities: (5,45) ,(3,34) \left( - 5 , \frac { 4 } { 5 } \right) , \left( - 3 , \frac { 3 } { 4 } \right)
xx -intercept: (3,0) ,y( 3,0 ) , y -intercept: (0,35) \left( 0 , \frac { 3 } { 5 } \right)
asymptotes: x=5,y=1x = 5 , y = 1
 For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes. - f ( x )  = \frac { \left( x ^ { 2 } - 9 \right)  ( x + 5 )  } { \left( x ^ { 2 } - 25 \right)  ( x + 3 )  }    A)  removable discontinuity at  ( - 3,0 )  ;   x -intercept:  ( - 3,0 )  , y -intercept:  \left( 0 , \frac { 3 } { 5 } \right)   asymptotes:  x = - 5 , y = 1      B)  removable discontinuity at  ( - 3 , - 3 )  ;   x -intercept:  ( 3,0 )  , y -intercept:  \left( 0 , - \frac { 3 } { 5 } \right)  ;   asymptotes:  x = - 5 , y = 1     C)  removable discontinuities:  \left( - 5 , \frac { 4 } { 5 } \right)  , \left( - 3 , \frac { 3 } { 4 } \right)    x -intercept:  ( 3,0 )  , y -intercept:  \left( 0 , \frac { 3 } { 5 } \right)   asymptotes:  x = 5 , y = 1      D)  removable discontinuities:  \left( - 5 , \frac { 1 } { 5 } \right)  , ( - 3,0 )  ;   x -intercept:  ( - 3,0 )  , y -intercept:  \left( 0 , - \frac { 3 } { 5 } \right)    asymptotes:  x = 5 , y = 1

D) removable discontinuities: (5,15) ,(3,0) \left( - 5 , \frac { 1 } { 5 } \right) , ( - 3,0 ) ; xx -intercept: (3,0) ,y( - 3,0 ) , y -intercept: (0,35) \left( 0 , - \frac { 3 } { 5 } \right)
asymptotes: x=5,y=1x = 5 , y = 1
 For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes. - f ( x )  = \frac { \left( x ^ { 2 } - 9 \right)  ( x + 5 )  } { \left( x ^ { 2 } - 25 \right)  ( x + 3 )  }    A)  removable discontinuity at  ( - 3,0 )  ;   x -intercept:  ( - 3,0 )  , y -intercept:  \left( 0 , \frac { 3 } { 5 } \right)   asymptotes:  x = - 5 , y = 1      B)  removable discontinuity at  ( - 3 , - 3 )  ;   x -intercept:  ( 3,0 )  , y -intercept:  \left( 0 , - \frac { 3 } { 5 } \right)  ;   asymptotes:  x = - 5 , y = 1     C)  removable discontinuities:  \left( - 5 , \frac { 4 } { 5 } \right)  , \left( - 3 , \frac { 3 } { 4 } \right)    x -intercept:  ( 3,0 )  , y -intercept:  \left( 0 , \frac { 3 } { 5 } \right)   asymptotes:  x = 5 , y = 1      D)  removable discontinuities:  \left( - 5 , \frac { 1 } { 5 } \right)  , ( - 3,0 )  ;   x -intercept:  ( - 3,0 )  , y -intercept:  \left( 0 , - \frac { 3 } { 5 } \right)    asymptotes:  x = 5 , y = 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions