Solved

Find the Rule That Defines Each Piecewise-Defined Function B) C)

Question 230

Multiple Choice

Find the rule that defines each piecewise-defined function.
- Find the rule that defines each piecewise-defined function. -   A)   f ( x )  = \left\{ \begin{array} { l l } \frac { 4 } { 3 } x + 4 & \text { if } - 3 \leq x \leq 0 \\ \frac { 2 } { 3 } x & \text { if } 0 < x \leq 3 \end{array} \right.  B)   f ( x )  = \left\{ \begin{array} { l l } \frac { 3 } { 4 } x + 4 & \text { if } - 3 \leq x \leq 0 \\ \frac { 3 } { 2 } x & \text { if } x > 0 \end{array} \right.  C)   f ( x )  = \left\{ \begin{array} { l l } \frac { 3 } { 4 } x + 4 & \text { if } - 3 \leq x \leq 0 \\ \frac { 3 } { 2 } x & \text { if } x \geq 0 \end{array} \right.  D)   f ( x )  = \left\{ \begin{array} { l l } \frac { 4 } { 3 } x + 4 & \text { if } - 3 \leq x \leq 0 \\ \frac { 2 } { 3 } x & \text { if } x > 0 \end{array} \right.


A) f(x) ={43x+4 if 3x023x if 0<x3f ( x ) = \left\{ \begin{array} { l l } \frac { 4 } { 3 } x + 4 & \text { if } - 3 \leq x \leq 0 \\ \frac { 2 } { 3 } x & \text { if } 0 < x \leq 3 \end{array} \right.
B) f(x) ={34x+4 if 3x032x if x>0f ( x ) = \left\{ \begin{array} { l l } \frac { 3 } { 4 } x + 4 & \text { if } - 3 \leq x \leq 0 \\ \frac { 3 } { 2 } x & \text { if } x > 0 \end{array} \right.
C) f(x) ={34x+4 if 3x032x if x0f ( x ) = \left\{ \begin{array} { l l } \frac { 3 } { 4 } x + 4 & \text { if } - 3 \leq x \leq 0 \\ \frac { 3 } { 2 } x & \text { if } x \geq 0 \end{array} \right.
D) f(x) ={43x+4 if 3x023x if x>0f ( x ) = \left\{ \begin{array} { l l } \frac { 4 } { 3 } x + 4 & \text { if } - 3 \leq x \leq 0 \\ \frac { 2 } { 3 } x & \text { if } x > 0 \end{array} \right.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions