Solved

The Function F Is One-To-One f(x)=14x+3f ( x ) = \frac { 1 } { 4 x + 3 }

Question 122

Multiple Choice

The function f is one-to-one. State the domain and the range of f and f-1. Write the domain and range in set-builder
notation.
- f(x) =14x+3f ( x ) = \frac { 1 } { 4 x + 3 }


A) f(x) :D={xx34},R={yy3}f ( x ) : D = \left\{ x \mid x \neq \frac { 3 } { 4 } \right\} , R = \{ y \mid y \neq - 3 \} ;
f1(x) :D={xx3,R={yy34}\mathrm { f } ^ { - 1 } ( \mathrm { x } ) : \mathrm { D } = \left\{ \mathrm { x } | \mathrm { x } \neq - 3 \rangle , R = \left\{ \mathrm { y } \mid \mathrm { y } \neq \frac { 3 } { 4 } \right\} \right.
B) f(x) :D={xxz34},R={yy0}f ( x ) : D = \left\{ x \mid x z - \frac { 3 } { 4 } \right\} , R = \{ y \mid y \neq 0 \} ;
f1(x) :D={xx0},R={yy34}f ^ { - 1 } ( x ) : D = \{ x \mid x \neq 0 \} , R = \left\{ y \mid y \neq - \frac { 3 } { 4 } \right\}
C) f(x) f ( x ) : D is all real numbers, RR is all real numbers;
f1(x) \mathrm { f } ^ { - 1 } ( \mathrm { x } ) : D\mathrm { D } is all real numbers, R\mathrm { R } is all real numbers

D) f(x) :D={xx14},R={yy13}f ( x ) : D = \left\{ x \mid x \neq \frac { 1 } { 4 } \right\} , R = \left\{ y \mid y \neq \frac { 1 } { 3 } \right\}
f1(x) :D={xx13},R={yy14}\mathrm { f } ^ { - 1 } ( \mathrm { x } ) : \mathrm { D } = \left\{ \mathrm { x } \mid \mathrm { x } \neq \frac { 1 } { 3 } \right\} , R = \left\{ \mathrm { y } \mid \mathrm { y } \neq \frac { 1 } { 4 } \right\}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions