Solved

Solve the Initial Value Problem tdydt+4y=t3;t>0,y(2)=1t \frac { d y } { d t } + 4 y = t ^ { 3 } ; t > 0 , y ( 2 ) = 1

Question 76

Multiple Choice

Solve the initial value problem.
- tdydt+4y=t3;t>0,y(2) =1t \frac { d y } { d t } + 4 y = t ^ { 3 } ; t > 0 , y ( 2 ) = 1


A) y=t37+1447t4,t>0y = \frac { t ^ { 3 } } { 7 } + \frac { 144 } { 7 } t ^ { - 4 } , t > 0
B) y=t37167t4,t>0y = \frac { t ^ { 3 } } { 7 } - \frac { 16 } { 7 } t ^ { - 4 } , t > 0
C) y=t372t4,t>0y = \frac { t ^ { 3 } } { 7 } - 2 t ^ { - 4 } , t > 0
D) y=t37+167t4,t>0y = \frac { t ^ { 3 } } { 7 } + \frac { 16 } { 7 } t ^ { - 4 } , t > 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions