Solved

Solve the Initial Value Problem θ2dydθ3θy=θ5secθtanθ;θ>0,y(π)=0\theta ^ { 2 } \frac { d y } { d \theta } - 3 \theta y = \theta ^ { 5 } \sec \theta \tan \theta ; \theta > 0 , y ( \pi ) = 0

Question 61

Multiple Choice

Solve the initial value problem.
- θ2dydθ3θy=θ5secθtanθ;θ>0,y(π) =0\theta ^ { 2 } \frac { d y } { d \theta } - 3 \theta y = \theta ^ { 5 } \sec \theta \tan \theta ; \theta > 0 , y ( \pi ) = 0


A) y=θ2cosθθ2,θ>0y = - \frac { \theta ^ { 2 } } { \cos \theta } - \theta ^ { 2 } , \theta > 0
B) y=θ3cosθ+θ3,θ>0y = \frac { \theta ^ { 3 } } { \cos \theta } + \theta ^ { 3 } , \theta > 0
C) y=θ2cosθ+θ2,θ>0y = \frac { \theta ^ { 2 } } { \cos \theta } + \theta ^ { 2 } , \theta > 0
D) y=θ3cosθθ3,θ>0y = - \frac { \theta ^ { 3 } } { \cos \theta } - \theta ^ { 3 } , \theta > 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions