Solved

Use Integration by Parts to Establish a Reduction Formula for the Integral

Question 382

Multiple Choice

Use integration by parts to establish a reduction formula for the integral.
- xnexdx\int \mathrm { x } ^ { \mathrm { n } } \mathrm { e } ^ { \mathrm { x } } \mathrm { dx }


A) xnexdx=xnex1n+1xn1exdx\int \mathrm { x } ^ { \mathrm { n } } \mathrm { e } ^ { \mathrm { x } } \mathrm { dx } = \mathrm { x } ^ { \mathrm { n } } \mathrm { e } ^ { \mathrm { x } } - \frac { 1 } { \mathrm { n } + 1 } \int \mathrm { x } ^ { \mathrm { n } - 1 } \mathrm { e } ^ { \mathrm { x } } \mathrm { dx }
B) xnexdx=xnex+nxn1exdx\int x ^ { n } e ^ { x } d x = x ^ { n } e ^ { x } + n \int x ^ { n - 1 } e ^ { x } d x
C) xnexdx=xnexnxn+1exdx\int x ^ { n } e ^ { x } d x = x ^ { n } e ^ { x } - n \int x ^ { n + 1 } e ^ { x } d x
D) xnexdx=xnexnxn1exdx\int x ^ { n } e ^ { x } d x = x ^ { n } e ^ { x } - n \int x ^ { n - 1 } e ^ { x } d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions