Solved

Use Integration by Parts to Establish a Reduction Formula for the Integral

Question 23

Multiple Choice

Use integration by parts to establish a reduction formula for the integral.
- cscnxdx,n1\int \csc ^ { n } x d x , n \neq 1


A) cscnxdx=1n1cscn2xcotx+n2n1cscn2xdx\int \csc ^ { n } x d x = \frac { - 1 } { n - 1 } \csc ^ { n - 2 } x \cot x + \frac { n - 2 } { n - 1 } \int \csc ^ { n - 2 } x d x
B) cscnxdx=cscn2xcotx+(n2) cscn2xdx\int \csc ^ { n } x d x = \csc ^ { n - 2 } x \cot x + ( n - 2 ) \int \csc ^ { n - 2 } x d x
C) cscnxdx=1n1cscn2xcotxn1ncscn1xdx\int \csc ^ { n } x d x = \frac { - 1 } { n - 1 } \csc ^ { n - 2 } x \cot x - \frac { n - 1 } { n } \int \csc ^ { n - 1 } x d x
D) cscnxdx=1n1cscn2xcotxn2n1cscn2xcotxdx\int \csc ^ { n } x d x = \frac { - 1 } { n - 1 } \csc ^ { n - 2 } x \cot x - \frac { n - 2 } { n - 1 } \int \csc ^ { n - 2 } x \cot x d x  Use integration by parts to establish a reduction formula for the integral. - \int \csc ^ { n } x d x , n \neq 1  A)   \int \csc ^ { n } x d x = \frac { - 1 } { n - 1 } \csc ^ { n - 2 } x \cot x + \frac { n - 2 } { n - 1 } \int \csc ^ { n - 2 } x d x  B)   \int \csc ^ { n } x d x = \csc ^ { n - 2 } x \cot x + ( n - 2 )  \int \csc ^ { n - 2 } x d x  C)   \int \csc ^ { n } x d x = \frac { - 1 } { n - 1 } \csc ^ { n - 2 } x \cot x - \frac { n - 1 } { n } \int \csc ^ { n - 1 } x d x  D)   \int \csc ^ { n } x d x = \frac { - 1 } { n - 1 } \csc ^ { n - 2 } x \cot x - \frac { n - 2 } { n - 1 } \int \csc ^ { n - 2 } x \cot x d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions