Solved

Use Integration by Parts to Establish a Reduction Formula for the Integral

Question 19

Multiple Choice

Use integration by parts to establish a reduction formula for the integral.
- (lnax) ndx\int ( \ln a x ) ^ { n } d x


A) (lnax) ndx=x(lnax) nn+na(lnax) n1dx\int ( \ln a x ) ^ { n } d x = \frac { x ( \ln a x ) ^ { n } } { n } + \frac { n } { a } \int ( \ln a x ) ^ { n - 1 } d x
B) (lnax) ndx=ax(lnax) nan(lnax) n1dx\int ( \ln a x ) ^ { n } d x = a x ( \ln a x ) ^ { n } - a n \int ( \ln a x ) ^ { n - 1 } d x
C) (lnax) ndx=x(lnax) nn(lnax) n1dx\int ( \ln a x ) ^ { n } d x = x ( \ln a x ) ^ { n } - n \int ( \ln a x ) ^ { n - 1 } d x
D) (lnax) ndx=x(lnax) nnna(lnax) n2dx\int ( \ln a x ) ^ { n } d x = \frac { x ( \ln a x ) ^ { n } } { n } - \frac { n } { a } \int ( \ln a x ) ^ { n - 2 } d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions