Solved

Use a Trigonometric Substitution to Evaluate the Integral 0ln3exdxe2x+1\int _ { 0 } ^ { \ln 3 } \frac { e ^ { x } d x } { \sqrt { e ^ { 2 x } + 1 } }

Question 439

Multiple Choice

Use a trigonometric substitution to evaluate the integral.
- 0ln3exdxe2x+1\int _ { 0 } ^ { \ln 3 } \frac { e ^ { x } d x } { \sqrt { e ^ { 2 x } + 1 } }


A) ln(e3+10) \ln \left( \mathrm { e } ^ { 3 } + \sqrt { 10 } \right)
B) ln(3+10) ln(1+2) \ln ( 3 + \sqrt { 10 } ) - \ln ( 1 + \sqrt { 2 } )
C) ln32\ln \frac { 3 } { 2 }
D) ln6ln(1+2) \ln 6 - \ln ( 1 + \sqrt { 2 } )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions