Solved

Find the Derivative of Y with Respect to the Appropriate y=csch1(13)θy = \operatorname { csch } ^ { - 1 } \left( \frac { 1 } { 3 } \right) ^ { \theta }

Question 60

Multiple Choice

Find the derivative of y with respect to the appropriate variable.
- y=csch1(13) θy = \operatorname { csch } ^ { - 1 } \left( \frac { 1 } { 3 } \right) ^ { \theta }


A) ln13\ln \frac { 1 } { 3 }
B) ln3(13) θ1+(13) θ\frac { \ln 3 } { \left( \frac { 1 } { 3 } \right) ^ { \theta } \sqrt { 1 + \left( \frac { 1 } { 3 } \right) ^ { \theta } } }
C) (13) θln31+(13) 2θ\frac { \left( \frac { 1 } { 3 } \right) ^ { \theta } \ln 3 } { \sqrt { 1 + \left( \frac { 1 } { 3 } \right) ^ { 2 \theta } } }
D) ln31+(13) 2θ\frac { \ln 3 } { \sqrt { 1 + \left( \frac { 1 } { 3 } \right) ^ { 2 \theta } } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions