menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Mathematics
  3. Study Set
    Thomas Calculus Early Transcendentals
  4. Exam
    Exam 8: Integrals and Transcendental Functions
  5. Question
    Verify the Integration Formula\[\int x \operatorname { csch } ^ { - 1 } x d x = \frac { x ^ { 2 } } { 2 } \operatorname { csch } ^ { - 1 } x + \frac { 1 } { 2 } \sqrt { 1 + x ^ { 2 } } + C\]
Solved

Verify the Integration Formula

Question 71

Question 71

True/False

Verify the integration formula.
- ∫xcsch⁡−1xdx=x22csch⁡−1x+121+x2+C\int x \operatorname { csch } ^ { - 1 } x d x = \frac { x ^ { 2 } } { 2 } \operatorname { csch } ^ { - 1 } x + \frac { 1 } { 2 } \sqrt { 1 + x ^ { 2 } } + C∫xcsch−1xdx=2x2​csch−1x+21​1+x2​+C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Q66: Solve the differential equation.<br>- <span class="ql-formula"

Q67: Evaluate the integral.<br>- <span class="ql-formula" data-value="\int

Q68: Determine if the given function y

Q69: Solve the problem.<br>-Find the length of

Q70: Evaluate the integral.<br>- <span class="ql-formula" data-value="\int

Q72: Express the value of the inverse

Q73: Determine if the given function y

Q74: Evaluate the integral in terms of

Q75: Evaluate the integral.<br>- <span class="ql-formula" data-value="\int

Q76: Express the value of the inverse

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines