Solved

Evaluate the Integral in Terms of an Inverse Hyperbolic Function 565dx36+x2\int _ { \sqrt { 5 } } ^ { 6 \sqrt { 5 } } \frac { d x } { \sqrt { 36 + x ^ { 2 } } }

Question 74

Multiple Choice

Evaluate the integral in terms of an inverse hyperbolic function.
- 565dx36+x2\int _ { \sqrt { 5 } } ^ { 6 \sqrt { 5 } } \frac { d x } { \sqrt { 36 + x ^ { 2 } } }


A) sinh1(5) sinh1(56) \sinh ^ { - 1 } ( \sqrt { 5 } ) - \sinh ^ { - 1 } \left( \frac { \sqrt { 5 } } { 6 } \right)
B) 16csch1(5) 16csch1(56) - \frac { 1 } { 6 } \operatorname { csch } ^ { - 1 } ( \sqrt { 5 } ) - \frac { 1 } { 6 } \operatorname { csch } ^ { - 1 } \left( \frac { \sqrt { 5 } } { 6 } \right)
C) cosh1(5) cosh1(56) \cosh ^ { - 1 } ( \sqrt { 5 } ) - \cosh ^ { - 1 } \left( \frac { \sqrt { 5 } } { 6 } \right)
D) 16sech1(5) +16sech1(56) - \frac { 1 } { 6 } \operatorname { sech } ^ { - 1 } ( \sqrt { 5 } ) + \frac { 1 } { 6 } \operatorname { sech } ^ { - 1 } \left( \frac { \sqrt { 5 } } { 6 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions