Solved

Solve the Problem y=3x4y = 3 x ^ { 4 }

Question 113

Multiple Choice

Solve the problem.
-A water tank is formed by revolving the curve y=3x4y = 3 x ^ { 4 } about the yy -axis. Water drains from the tank through a small hole in the bottom of the tank. At what constant rate does the water level, y\mathrm { y } , fall? (Use Torricelli's Law: dV/dt=my\mathrm { dV } / \mathrm { dt } = - \mathrm { m } \sqrt { \mathrm { y } } .)


A) dydt=mπ3\frac { \mathrm { dy } } { \mathrm { dt } } = \frac { - \mathrm { m } \pi } { \sqrt { 3 } }
B) dydt=m3π\frac { \mathrm { dy } } { \mathrm { dt } } = \frac { - \mathrm { m } \sqrt { 3 } } { \pi }
C) dydt=πm3\frac { \mathrm { dy } } { \mathrm { dt } } = \frac { - \pi } { \mathrm { m } \sqrt { 3 } }
D) dydt=3mπ\frac { d y } { d t } = \frac { - \sqrt { 3 } } { m \pi }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions