Solved

Find the Center of Mass of a Thin Plate of Constant

Question 143

Multiple Choice

Find the center of mass of a thin plate of constant density covering the given region.
-The region bounded by the xx -axis and the semicircle y=49x2y = \sqrt { 49 - x ^ { 2 } }


A) xˉ=73π,yˉ=0\bar { x } = \frac { 7 } { 3 \pi } , \bar { y } = 0
B) xˉ=0,yˉ=73π\bar { x } = 0 , \bar { y } = \frac { 7 } { 3 \pi }
C) xˉ=0,yˉ=283π\bar { x } = 0 , \bar { y } = \frac { 28 } { 3 \pi }
D) xˉ=283π,yˉ=283π\bar { x } = \frac { 28 } { 3 \pi } , \bar { y } = \frac { 28 } { 3 \pi }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions