Solved

Find the Moment or Center of Mass of the Wire y=4x2y = \sqrt { 4 - x ^ { 2 } }

Question 136

Multiple Choice

Find the moment or center of mass of the wire, as indicated.
-Find the center of mass of a wire that lies along the semicircle y=4x2y = \sqrt { 4 - x ^ { 2 } } if the density of the wire is δ=2sinθ\delta = 2 \sin \theta .


A) xˉ=12π,yˉ=12π\bar { x } = \frac { 1 } { 2 } \pi , \bar { y } = \frac { 1 } { 2 } \pi
B) xˉ=0,yˉ=14π\bar { x } = 0 , \bar { y } = \frac { 1 } { 4 } \pi
C) xˉ=14π,yˉ=14π\bar { x } = \frac { 1 } { 4 } \pi , \bar { y } = \frac { 1 } { 4 } \pi
D) xˉ=0,yˉ=12π\bar { x } = 0 , \bar { y } = \frac { 1 } { 2 } \pi

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions