Solved

Find the Derivative at Each Critical Point and Determine the Local

Question 123

Multiple Choice

Find the derivative at each critical point and determine the local extreme values.
- y=x2/3(x29) ;x0y=x^{2 / 3}\left(x^{2}-9\right) ; x \geq 0


A)
 Critical Pt.  derivative  Extremum  Value x=0 Undefined  local max 0x=1.50 minimum 14.742\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=0 & \text { Undefined } & \text { local max } & 0 \\x=1.5 & 0 & \text { minimum } & 14.742\end{array}

B)
 Critical Pt.  derivative  Extremum  Value x=0 Undefined  local max 0x=1.50 minimum 8.845\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=0 & \text { Undefined } & \text { local max } & 0 \\x=1.5 & 0 & \text { minimum } & -8.845\end{array}

C)
 Critical Pt.  derivative  Extremum  Value x=00 maximum 0x=1.50 minimum 8.845\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=0 & 0 & \text { maximum } & 0 \\x=1.5 & 0 & \text { minimum } & -8.845\end{array}

D)
 Critical Pt.  derivative  Extremum  Value x=0 Undefined  local max 3x=1.50 minimum 8.845\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=0 & \text { Undefined } & \text { local max } & 3 \\x=1.5 & 0 & \text { minimum } & -8.845\end{array}


Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions