Solved

Find the Function with the Given Derivative Whose Graph Passes r(θ)=4+sec2θ,P(π4,0)\mathrm { r } ^ { \prime } ( \theta ) = 4 + \sec ^ { 2 } \theta , \mathrm { P } \left( \frac { \pi } { 4 } , 0 \right)

Question 124

Multiple Choice

Find the function with the given derivative whose graph passes through the point P.
- r(θ) =4+sec2θ,P(π4,0) \mathrm { r } ^ { \prime } ( \theta ) = 4 + \sec ^ { 2 } \theta , \mathrm { P } \left( \frac { \pi } { 4 } , 0 \right)


A) r(θ) =4θ+tanθπ1r ( \theta ) = 4 \theta + \tan \theta - \pi - 1
B) r(θ) =4θ+13sec3θr ( \theta ) = 4 \theta + \frac { 1 } { 3 } \sec ^ { 3 } \theta
C) r(θ) =2θ2+tanθ+πr ^ { \prime } ( \theta ) = 2 \theta ^ { 2 } + \tan \theta + \pi
D) r(θ) =2θ2+tanθπ1r ( \theta ) = 2 \theta ^ { 2 } + \tan \theta - \pi - 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions